中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

好氧/厌氧环境对微生物降解典型微塑料效能影响研究

毕鑫祺 龚志伟 马杰 周立昌 江锦琦 郭刚

毕鑫祺, 龚志伟, 马杰, 周立昌, 江锦琦, 郭刚. 好氧/厌氧环境对微生物降解典型微塑料效能影响研究[J]. 环境工程, 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
引用本文: 毕鑫祺, 龚志伟, 马杰, 周立昌, 江锦琦, 郭刚. 好氧/厌氧环境对微生物降解典型微塑料效能影响研究[J]. 环境工程, 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
Citation: BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009

好氧/厌氧环境对微生物降解典型微塑料效能影响研究

doi: 10.13205/j.hjgc.202407009
基金项目: 

湖北省重点研发计划项目"工业含盐废水脱盐、重金属去除及深度脱碳关键技术研究"(2022BCA065)

国家自然科学基金项目"单质硫强化低碳源污水反硝化除磷机理及调控"(52100040)

国家重点基础研究发展计划项目"长江经济带大中城市多源有机固废园区化协同处置及示范"(2019YFC1904005)

详细信息
    作者简介:

    毕鑫祺(1998-),男,硕士研究生,主要研究方向为污水处理及资源化。m202274139@hust.edu.cn

    通讯作者:

    郭刚(1987-),男,博士,副研究员,主要研究方向为固废处理与资源化、污水处理及资源化。ceguogang@hust.edu.cn

EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS

  • 摘要: 室温条件下,对比了3种典型微塑料:聚羟基脂肪酸酯(Polyhydroxyalkanoate,PHA)、聚乳酸酯(Polylactic acid,PLA)和聚氯乙烯(Polyvinyl chloride,PVC)在好氧和厌氧环境中被微生物降解的效能。扫描电子显微镜(SEM)、差示扫描热分析仪(DSC)、傅里叶红外光谱(FTIR)、平均质量及微生物作用占比实验分析结果表明:PHA在好氧和厌氧环境中的微生物降解速率相似,均约为25.72 mg C/d,降解后的PHA表面均会出现明显的沟壑和裂痕,且酯基等官能团的丰度、结晶度和平均质量均降低;PLA虽为可生物降解微塑料但结晶度高,同自身结构稳定的难降解微塑料PVC,均未能被降解。PHA降解产物的变化特征和碳平衡核算结果表明,PHA中的碳主要转化为CH3COOH、CH4和生物质中的碳,但在好氧和厌氧环境中产物占比差异明显,分别为5.23% vs. 0.27%、4.28% vs. 12.24%、87.05% vs. 82.50%,这可能与好氧和厌氧环境中参与PHA降解的微生物丰度和关键酶活性不同有关。系统评估了3种典型微塑料在好氧和厌氧环境中降解速率和降解产物的差异,可为全面评价微塑料的环境风险提供重要理论指导。
  • [1] WANG J, QIN X, GUO J, et al. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers[J]. Water Research, 2020, 183:116113.
    [2] AZIZI S M M, HAFFIEZ N, ZAKARIA B S, et al. Thermal hydrolysis of sludge counteracts polystyrene nanoplastics-induced stress during anaerobic digestion[J]. ACS ES&T Engineering, 2022, 2(7):1306-1315.
    [3] CESARO A, PIROZZI F, ZAFIRAKOU A, et al. Microplastics in sewage sludge destined to anaerobic digestion: the potential role of thermal pretreatment[J]. Chemosphere, 2022, 309:136669.
    [4] 张胜威. 微塑料对活性污泥系统及微生物菌群的影响研究[D].西安:西安理工大学, 2022.
    [5] KOELMANS A A, MOHAMED NOR N H, HERMSEN E, et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality[J]. Water Research, 2019, 155:410-422.
    [6] WRIGHT R J, ERNI-CASSOLA G, ZADJELOVIC V, et al. Marine plastic debris: a new surface for microbial colonization[J]. Environmental Science & Technology, 2020, 54(19):11657-11672.
    [7] CHANG X, FANG Y, WANG Y, et al. Microplastic pollution in soils, plants, and animals: a review of distributions, effects and potential mechanisms[J]. Science of the Total Environment 2022, 850:157857.
    [8] SOL D, LACA A, LACA A, et al. Approaching the environmental problem of microplastics: importance of WWTP treatments[J]. Science of the Total Environment, 2020, 740:140016.
    [9] ESTAHBANATI S, FAHRENFELD N L. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water[J]. Chemosphere, 2016, 162:277-284.
    [10] MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WWTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11):5800-5808.
    [11] BRETAS ALVIM C, BES-PIÁ M A, MENDOZA-ROCA J A. Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants[J]. Chemical Engineering Journal, 2020, 402:126293.
    [12] LEE H, KIM Y. Treatment characteristics of microplastics at biological sewage treatment facilities in Korea[J]. Marine Pollution Bulletin, 2018, 137:1-8.
    [13] SU Y, ZHANG Z, WU D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019, 164:114968.
    [14] EMADIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017, 59:526-536.
    [15] ZHAO J, WANG D, LIU Y, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation[J]. Bioresource Technology, 2018, 249:431-438.
    [16] MA J, LIU H, ZHANG C, et al. Joint response of chemistry and functional microbial community to oxygenation of the reductive confined aquifer[J]. Science of the Total Environment, 2020, 720:137587.
    [17] MA J, GONG Z, WANG Z, et al. Elucidating degradation properties, microbial community, and mechanism of microplastics in sewage sludge under different terminal electron acceptors conditions[J]. Bioresource Technology, 2022, 346:126624.
    [18] 牟文. 氯化汞对水生生物的毒性效应研究[D]. 武汉:华中师范大学, 2010.
    [19] 刘婷婷. 塑料地膜对微生物群落构建和演替的影响及塑料降解菌(群)筛选[D]. 杨凌:西北农林科技大学, 2021.
    [20] NIU L, WANG Y, LI Y, et al. Occurrence, degradation pathways, and potential synergistic degradation mechanism of microplastics in surface water: a review[J]. Current Pollution Reports, 2023, 9(2):312-326.
    [21] NARANCIC T, VERSTICHEL S, REDDY CHAGANTI S, et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution[J]. Environmental Science & Technology, 2018, 52(18):10441-10452.
    [22] NIU L, CHEN Y, LI Y, et al. Diversity, abundance and distribution characteristics of potential polyethylene and polypropylene microplastic degradation bacterial communities in the urban river[J]. Water Research, 2023, 232:119704.
    [23] 邓子昂. 微塑料污染的红外和拉曼光谱检测研究[D].昆明:云南师范大学, 2021.
    [24] CHIENG B, IBRAHIM N, YUNUS W, et al. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets[J]. Polymers, 2014, 6(1):93-104.
    [25] AMOBONYE A, BHAGWAT P, SINGH S, et al. Plastic biodegradation: frontline microbes and their enzymes[J]. Science of the Total Environment, 2021, 759:143536.
    [26] BUCKNALL D G. Plastics as a materials system in a circular economy[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2020, 378(2176):20190268.
    [27] WANG D, ZHAO J, ZENG G, et al. How does poly(hydroxyalkanoate) affect methane production from the anaerobic digestion of waste-activated sludge?[J]. Environmental Science & Technology, 2015, 49(20):12253-12262.
    [28] WANG Q, SUN J, ZHANG C, et al. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate[J]. Scientific Reports, 2016, 6(1).
    [29] LEE Y K, MURPHY K R, HUR J. Fluorescence signatures of dissolved organic matter leached from microplastics: polymers and additives[J]. Environmental Science & Technology, 2020, 54(19):11905-11914.
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  29
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回