EXPERIMENTAL STUDY ON EFFECT OF SOIL COLLOIDS ON MOBILITY OF NANOPLASTICS UNDER DIFFERENT HYDROCHEMICAL CONDITIONS
-
摘要: 为研究土壤胶体在不同水化学条件下对纳米塑料迁移性的影响,选取直径100 nm的聚苯乙烯纳米塑料,通过虹吸法提取土壤胶体,采用穿透试验,通过zeta电位和DLVO势能壁垒曲线揭示了纳米塑料在饱和多孔介质中迁移的相关机理。结果表明:纳米塑料的迁移能力随着溶液pH值增加而增大,随着IS增大而减小。pH和IS的变化改变了纳米塑料和玻璃珠的表面电荷,从而影响了颗粒间的相互作用能。pH值从4.0增大到9.0时(10 mmol/L NaCl,膨润土胶体),DLVO峰值壁垒从45.11 kT增大到61.89 kT,纳米塑料和玻璃珠的zeta电位显著降低,纳米塑料的可移动性增强,累计出流量从42.80%增加到62.21%。膨润土胶体和伊利石胶体均加快了纳米塑料在饱和多孔介质中的迁移,膨润土胶体对纳米塑料可移动性的影响更显著。研究结果可为纳米塑料在地下水土环境中的迁移提供有价值的见解,对于塑料污染防治具有重要意义。Abstract: To investigate the effect of soil colloids on the migration of nanoplastics under different hydrochemical conditions, Polystyrene nanoplastics (PSNPs) with a particle size of 100 nm were selected, and soil colloids were extracted by siphon method. The mechanism of PSNPs migration in saturated porous media was revealed by zeta potential and DLVO theory. The results showed that the migration of PSNPs was influenced by the pH and the ionic strength (IS). The mobility of PSNP increased with the increase of pH and decreased with the increase of IS. Variations in pH and IS altered the surface charges of both PSNPs and porous media thus affecting the interaction energy. As pH increased from 4.0 to 9.0 (10 mmol/L NaCl, bentonite colloid), the peak DLVO barrier increased from 45.11 kT to 61.89 kT, and the zeta potential was significantly reduced. The migration capacity of the PSNPs was improved, resulting in a rise in the outflow rate from 42.80% to 62.21%. Both bentonite colloids and illite colloids accelerated the migration of PSNPs in saturated porous media, whereas the effect of bentonite colloids on the mobility of PSNPs was more significant. The results provide valuable insights into the migration of PSNPs in subsurface soil and water environments, which is of great importance for the prevention of plastic pollution.
-
Key words:
- nanoplastics /
- migration /
- soil colloids /
- breakthrough test /
- mobility
-
[1] 王佳佳, 赵娜娜, 李金惠. 中国海洋微塑料污染现状与防治建议[J]. 中国环境科学, 2019, 39(7):3056-3063. [2] SILVA A B, BASTOS A S, JUSTINO C I, et al. Microplastics in the environment: challenges in analytical chemistry: a review[J]. Analytica Chimica Acta, 2018, 1017:1-19. [3] BRANDTS I, TELES M, GONÇALVES A, et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine[J]. Science of the Total Environment, 2018, 643:775-784. [4] PITT J A, TREVISAN R, MASSARSKY A, et al. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene[J]. Science of the Total Environment, 2018, 643:324-334. [5] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141. [6] BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612:422-435. [7] 杨光蓉, 陈历睿, 林敦梅. 土壤微塑料污染现状, 来源, 环境命运及生态效应[J]. 中国环境科学, 2021, 41(1):353-365. [8] ZHAO G, WU Y. Study on transport mechanism of microplastics in vertically fixed porous media[J]. Advances in Environmental Protection, 2020, 10(3):382-387. [9] KUMAR M, CHEN H, SARSAIYA S, et al. Current research trends on micro-and nano-plastics as an emerging threat to global environment: a review[J]. Journal of Hazardous Materials, 2021, 409:124967. [10] RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1):1-6. [11] 张姗姗, 王洋清, 赵由才, 等. 垃圾填埋场中的塑料-微塑料-纳米塑料环境行为研究前瞻[J]. 环境卫生工程, 2021, 29(3):58-68. [12] SONG Z, YANG X, CHEN F, et al. Fate and transport of nanoplastics in complex natural aquifer media: effect of particle size and surface functionalization[J]. Science of the Total Environment, 2019, 669:120-128. [13] 薛传成, 王艳, 刘干斌, 等. 温度和pH对多孔介质中悬浮颗粒渗透迁移的影响[J]. 岩土工程学报, 2019, 41(11):2112-2119. [14] LU T, GILFEDDER B S, PENG H, et al. Relevance of iron oxyhydroxide and pore water chemistry on the mobility of nanoplastic particles in water-saturated porous media environments[J]. Water, Air, & Soil Pollution, 2021, 232(5):1-13. [15] WU X, LYU X, LI Z, et al. Transport of polystyrene nanoplastics in natural soils: effect of soil properties, ionic strength and cation type[J]. Science of the Total Environment, 2020, 707:136065. [16] BAI B, NIE Q, ZHANG Y, et al. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage[J]. Journal of Hydrology, 2021, 597:125771. [17] 蔡叶青, 陈永贵, 叶为民, 等. 处置库近场膨润土胶体产生及稳定性研究进展[J]. 岩土工程学报, 2020, 42(11):1996-2005. [18] 张鹏远, 白冰, 蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. 岩土力学, 2016, 37(5):1307-1316. [19] 张文杰, 李俊涛. 优先流作用下的胶体-重金属共迁移试验研究[J]. 岩土工程学报, 2020, 42(1):46-52. [20] SAIERS J E, HORNBERGER G M. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns[J]. Water Resources Research, 1996, 32(1):33-41. [21] GROLIMUND D, BORKOVEC M, BARMETTLER K, et al. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study[J]. Environmental Science & Technology, 1996, 30(10):3118-3123. [22] LU T, GILFEDDER B S, PENG H, et al. Effects of clay minerals on the transport of nanoplastics through water-saturated porous media[J]. Science of the Total Environment, 2021, 796:148982. [23] HOGG R, HEALY T W, FUERSTENAU D W. Mutual coagulation of colloidal dispersions[J]. Transactions of the Faraday Society, 1966, 62:1638-1651. [24] GREGORY J. Approximate expressions for retarded van der Waals interaction[J]. Journal of Colloid and Interface Science, 1981, 83(1):138-145. [25] ELIMELECH M, O'MELIA C R. Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers[J]. Langmuir, 1990, 6(6):1153-1163. [26] RUSSEL W B, RUSSEL W, SAVILLE D A, et al. Colloidal dispersions[M]. Cambridge: Cambridge University Press, 1991. [27] ZHANG W, TANG X, WEISBROD N, et al. A review of colloid transport in fractured rocks[J]. Journal of Mountain Science, 2012, 9:770-787. [28] ZHANG Y, LUO Y, GUO X, et al. Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase[J]. Water Research, 2020, 178:115861. [29] TOMBACZ E, SZEKERES M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes[J]. Applied Clay Science, 2004, 27(1/2):75-94. [30] ZHAO Y, GU X, GAO S, et al. Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects[J]. Geoderma, 2012, 183:12-18.
点击查看大图
计量
- 文章访问数: 23
- HTML全文浏览量: 9
- PDF下载量: 0
- 被引次数: 0