INVESTIGATION OF OCCURRENCE REGULARITY OF MICROPLASTICS IN RAINWATER RUNOFF
-
摘要: 为明确雨水径流中微塑料的赋存情况,选取高校生活区、公路和生活小区为采样点,对实际雨水径流进行样品采集,采用密度分离法对雨水样品进行预处理,使用安捷伦LDIR-8700激光红外成像光谱仪对水样中微塑料的丰度、类型及粒径进行检测与分析。在所有样品中均检测到微塑料的存在,微塑料的丰度与降雨事件前干旱天数有关,随着干旱天数的增加,微塑料的丰度也随之增加。微塑料的类型与采样点的社会生活功能有关。将微塑料粒径分为0~30,30~50,50~100,100~200 μm和>200 μm 5个区间,3个采样点检测出微塑料的粒径均以0~50 μm为主,表明大粒径塑料会受自然外力的影响不断破碎形成小粒径微塑料。研究结果可为雨水中微塑料的检测方法以及水环境中微塑料的来源提供数据支持。Abstract: To clarify the occurrence of microplastics in rainwater runoff, the sampling points in a university campus, a road, and a residential community were selected to collect samples of actual rainwater runoff. The density separation method was used to pretreat the rainwater samples, and the abundance, type and particle size of microplastics in the water samples were detected and analyzed, using an Agilent LDIR-8700 laser infrared imaging spectrometer. The presence of microplastics was detected in all samples. The abundance of microplastics was related to the number of dry days before the rainfall event, and increased with the number of dry days. The types of microplastics were related to the social life functions of the sampling sites. The particle sizes of microplastics were divided into five intervals: 0 to 30 μm, 30 to 50 μm, 50 to 100 μm, 100 to 200 μm, and 200 μm above. The particle sizes of microplastics detected at the three sampling sites were mainly in the range of 0 to 50 μm, indicating that large-size plastics would be continuously broken to form small-size microplastics by the influence of natural external forces. The results can provide data support for the detection methods of microplastics in rainwater and the sources of microplastics in water environment.
-
Key words:
- rainwater runoff /
- microplastics /
- university campus /
- roads /
- residential community
-
[1] HAAVE M, LORENZ C, PRIMPKE S, et al. Different stories told by small and large microplastics in sediment-first report of microplastic concentrations in an urban recipient in Norway[J]. Mar Pollut Bull, 2019, 141: 501-513. [2] PRATA J C, DA COSTA J P, LOPES I, et al. Effects of microplastics on microalgae populations: a critical review[J]. Sci Total Environ, 2019, 665: 400-405. [3] VAN WEERT S, REDONDO-HASSELERHARM P E, DIEPENS N J, et al. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. Sci Total Environ, 2019, 654: 1040-1047. [4] BOTTERELL Z L R, BEAUMONT N, DORRINGTON T, et al. Bioavailability and effects of microplastics on marine zooplankton: a review[J]. Environ Pollut, 2019, 245: 98-110. [5] XU S, MA J, JI R, et al. Microplastics in aquatic environments: occurrence, accumulation, and biological effects[J]. Sci Total Environ, 2020, 703: 134699. [6] WANG W, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China[J]. Sci Total Environ, 2017, 575: 1369-1374. [7] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environ Sci Technol, 2018, 52(4): 1704-1724. [8] CARBERY M, O'CONNOR W, THAVAMANI P. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health[J]. Environment International, 2018, 115: 400-409. [9] 仇付国, 童诗雨, 王肖倩. 水环境中微塑料赋存现状及生态危害研究进展[J]. 环境工程, 2022, 40(3): 221-228. [10] KANHAI D K, GARDFELDT K, KRUMPEN T, et al. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean[J]. Sci Rep, 2020, 10(1): 5004. [11] LILI X, LIANG C, WEI H, et al. Assessment of plastic pollution in the Bohai Sea: abundance, distribution, morphological characteristics and chemical components[J]. Environmental Pollution, 2021, 278: 116874. [12] 刘璐, 孙启智, 刘章华, 等. 水环境中微塑料的迁移及其与有机污染物的复合毒性效应研究进展[J]. 环境化学, 2022, 41(5): 1504-1514. [13] 陈莎, 陈晓宏. 城市雨水径流污染及LID控制效果模拟[J]. 水资源保护, 2018, 34(5): 13-19. [14] ORY N C, LEHMANN A, JAVIDPOUR J, et al. Factors influencing the spatial and temporal distribution of microplastics at the sea surface: a year-long monitoring case study from the urban Kiel Fjord, southwest Baltic Sea[J]. Sci Total Environ, 2020, 736: 139493. [15] 刘慧婷, 周志文, 葛琦. 微塑料在我国重要水体中的污染现状[J]. 环境保护与循环经济, 2022, 42(9): 42-47. [16] 崔砚琦. 北京城市不同功能区径流雨水微塑料赋存特征研究[D]. 北京: 北京建筑大学, 2022. [17] YI-LING C, RUIJIE Z, LOUIS T, et al. Characterization of microplastics in sediment using stereomicroscopy and laser direct infrared (LDIR) spectroscopy[J]. Gondwana Research, 2022, 108: 22-30. [18] LULU L, XIEMIN Y, LIMIN F, et al. Challenge for the detection of microplastics in the environment[J]. Water Environment Research, 2019, 93(1): 5-15. [19] 王愔睿. 塑胶场径流中典型污染物及微塑料的赋存与风险评估[D]. 北京: 北京建筑大学, 2021. [20] HAN M, NIU X, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Sci Total Environ, 2019, 707: 135601. [21] 刘超, 张晓然, 刘俊峰, 等. 塑料制品中微塑料的释放行为及在环境中的迁移规律研究进展[J]. 环境工程, 2022, 40(5): 205-217. [22] JARLSKOG I, STROMVALL A M, MAGNUSSON K, et al. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater[J]. Sci Total Environ, 2020, 729: 138950. 期刊类型引用(26)
1. 黄晓波,刘冠伦,梁永贤,颜敏. 深圳市道路扬尘排放因子研究. 广东化工. 2024(08): 93-95 . 百度学术
2. 肖扬,姬亚芹,王淼,赵静琦,高玉宗,杨益,杨夏微,王冰冰,李景,丛晓晓. 西宁市道路扬尘排放清单及时空分布特征. 环境化学. 2024(04): 1167-1176 . 百度学术
3. 王毅东,王明娅,韩桥,李梦飞,王文钜,张雪纯,熊钦卿,张春辉,姜凤成,王明仕. 安阳市夏季道路积尘水溶性离子污染特征及来源分析. 环境化学. 2023(07): 2328-2339 . 百度学术
4. 张发闯,熊远明,杜成松,蒋宇,汪永东,周敬,印红玲. 不同清扫作业方式与道路积尘/扬尘的关系. 环境卫生工程. 2023(06): 97-104 . 百度学术
5. 刘扬,王颖,刘灏,秦闯,王思潼,李博,郭春晔. 基于WRF-Chem模拟验证的天水市主城区大气污染源排放清单. 中国环境科学. 2022(01): 32-42 . 百度学术
6. 王海斌,樊守彬,韩力慧,李婷婷,曲松,崔浩然,刘俊芳. 北京市通州区秋季典型工地出口道路尘负荷排放特征. 环境工程技术学报. 2022(01): 6-14 . 百度学术
7. 马彤,巴利萌,孙璐萍,刘佳媛,王杰,程晓夏,郑易飞,高健. 基于光散射快速检测法的渭南市道路积尘研究. 大气与环境光学学报. 2022(03): 336-346 . 百度学术
8. 杨乃旺,宋文斌,闫东杰,宋雪娟,杨玉林,夏永军. 基于积尘负荷的西安市铺装道路扬尘排放研究. 环境科学学报. 2021(04): 1259-1266 . 百度学术
9. 刘俊芳,樊守彬,郭秀锐,崔浩然,申亚倩. 基于车载移动监测的北京市丰台区道路扬尘源排放特征. 环境科学学报. 2021(11): 4423-4429 . 百度学术
10. 张金,姬亚芹,邢雅彤,吕帅,丁江颖,赵静琦. 天津市高校夏季道路扬尘PM_(2.5)中水溶性离子污染特征及来源. 环境科学学报. 2020(05): 1604-1610 . 百度学术
11. 亓浩雲,樊守彬,王凯. 北京市不同功能区冬季道路扬尘排放特征. 环境工程技术学报. 2020(03): 323-329 . 百度学术
12. 晁娜,蒋琦清,朱俊,杨强,滕富华,吴建,陈加山. 省级高空间分辨率扬尘源排放清单研究. 中国环境监测. 2020(05): 63-71 . 百度学术
13. 郭硕,肖捷颖,安塞,周盼,秦伟,刘娟,姬亚芹. 利用快速检测法研究石家庄道路交通扬尘排放特征. 环境污染与防治. 2019(02): 206-210 . 百度学术
14. 赵静琦,姬亚芹,李越洋,张蕾,王士宝. 天津市道路车流量特征分析. 环境科学研究. 2019(03): 399-405 . 百度学术
15. 鲁朝旭. 南充市大气颗粒物(PM_(2.5))污染研究. 绿色科技. 2019(06): 102-105 . 百度学术
16. 竹涛,王若男,袁前程,刘笑阳,张星,刘海兵,刘锋. 基于积尘负荷法对北京市铺装道路扬尘排放清单的研究. 太原理工大学学报. 2019(04): 503-509 . 百度学术
17. 乔玉红,叶芝祥,杨怀金,张罡. 成都市铺装道路积尘碳组分特征及排放因子研究. 四川环境. 2019(05): 7-13 . 百度学术
18. 周盼,秦伟,郭硕,安塞,肖捷颖,刘娟,姬亚芹. 石家庄冬季道路积尘水溶性离子污染特征及来源分析. 环境化学. 2018(05): 952-958 . 百度学术
19. 王士宝,姬亚芹,张伟,张蕾,赵静琦,李越洋. 乌鲁木齐道路扬尘PM_(2.5)粒度乘数特征. 环境科学研究. 2018(07): 1201-1206 . 百度学术
20. 赵静琦,姬亚芹,张蕾,王士宝,李越洋. 基于样方法的天津市春季道路扬尘PM_(2.5)中水溶性离子特征及来源解析. 环境科学. 2018(05): 1994-1999 . 百度学术
21. 舒丽,罗彬,胡健,夏杰,张凌云,罗斌,钟利健,张自全. 南充市大气PM_(10)与PM_(2.5)排放清单及特征. 中国环境监测. 2018(03): 84-92 . 百度学术
22. 祝嘉欣,成海容,虎彩娇,王祖武. 武汉市道路扬尘源排放清单及空间分布特征研究. 南京信息工程大学学报(自然科学版). 2018(05): 557-562 . 百度学术
23. 周子航,邓也,谭钦文,吴柯颖,杨欣悦,周小玲. 四川省人为源大气污染物排放清单及特征. 环境科学. 2018(12): 5344-5358 . 百度学术
24. TANG Ying-Xiao,LIAO Hong,FENG Jin. Estimating emissions and concentrations of road dust aerosol over China using the GEOS-Chem model. Atmospheric and Oceanic Science Letters. 2017(04): 298-305 . 必应学术
25. 李树立,姬亚芹,朱振宇,张诗建,张伟,赵静波. 天津市秋季道路降尘粒度乘数的分布特征. 环境化学. 2017(03): 480-485 . 百度学术
26. 张伟,姬亚芹,张军,张蕾,王伟,王士宝. 辽宁典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及来源解析. 环境科学. 2017(12): 4951-4957 . 百度学术
其他类型引用(26)
-

计量
- 文章访问数: 92
- HTML全文浏览量: 27
- PDF下载量: 2
- 被引次数: 52