ENHANCED NITROGEN REMOVAL BY AEROBIC GRANULAR SLUDGE AND EVOLUTION OF MICROBIAL COMMUNITY
-
摘要: 为实现好氧颗粒污泥(AGS)系统高效的脱氮效果,在AGS系统前端设置厌氧段形成"厌氧/好氧" (A/O)运行模式来强化AGS系统的脱氮效果;同时研究整个试验过程中AGS的污泥特性和微生物群落结构的变化。结果表明:AGS以丝状菌作为骨架,活性污泥在水力剪切力的作用下不断地黏附在骨架上,进而形成AGS;其过程中胞外聚合物(EPS)组分中蛋白质含量显著增加,污泥表面Zeta电位值降低,提高了污泥间的凝聚性能,保证了AGS的形成和稳定性运行。污泥颗粒化阶段,unclassified_f__Sphingomonadaceae、unclassified_o__Saccharimonadales等具有疏水性且分泌EPS功能菌属的相对丰度上升,促进了污泥颗粒化。A/O运行模式的介入提高了AGS系统中与脱氮相关菌属的相对丰度,强化了AGS系统的脱氮性能;第110天低温环境的介入下,AGS系统依然保持稳定运行,最终TN去除率上升至78.2%,其主要归功于Zoogloea(由4.6%升至8.2%)、Thauera(由2.0%升至2.3%)、Rhodobacter(由2.3%升至2.7%)、norank_f__Actinomycetaceae(由1.8%升至3.7%)、Pseudoxanthomonas(由2.2%升至4.5%)等菌属的相对丰度上升。Abstract: To realize the efficient nitrogen removal of aerobic granular sludge (AGS), this study set an anaerobic section at the front end of the AGS system to form an anaerobic/aerobic (A/O) operation mode, to enhance the denitrification of the AGS system. At the same time, the changes in sludge characteristics and microbial community structure of AGS during the whole experiment were studied. The results showed that AGS was composed of filamentous bacteria as the skeleton, and the activated sludge continuously adhered to the skeleton under the action of hydraulic shear force to form AGS. During the process, the protein content in the extracellular polymeric substance (EPS) increased significantly, and the Zeta potential value of the sludge surface decreased, which improved the coagulation performance between the sludge and ensured the formation and stable operation of AGS. In the sludge granulation stage, the relative abundance of hydrophobic and EPS-secreting bacteria, such as unclassified_f__Sphingomonadaceae and unclassified_o__Saccharimonadales increased, which promoted sludge granulation. The intervention of A/O operation mode increased the relative abundance of nitrogen-related bacteria in the AGS system and enhanced the nitrogen removal performance of the AGS system. On the 110th day, the interventional AGS system in the low-temperature environment still maintained stable operation, and the final TN removal rate increased to 78.2%. The main reason was attributed to the increase in the relative abundance of Zoogloea (4.6%→8.2%), Thauera (2.0%→2.3%), Rhodobacter (2.3%→2.7%), norank_f__Actinomycetaceae (1.8%→3.7%), Pseudoxanthomonas (2.2%→4.5%), etc.
-
Key words:
- aerobic granular sludge /
- microbial community /
- strengthen denitrification /
- A/O model
-
[1] 黄思浓, 林树涛, 易名儒, 等.好氧颗粒污泥的脱氮途径研究进展[J].工业水处理, 2021, 41(9):37-42. [2] WANG S, SHI W, YU S, et al. Rapid cultivation of aerobic granular sludge by bone glue augmentation and contaminant removal characteristics[J]. Water Science & Technology, 2013, 67(7):1627. [3] BENGTSSON S, DU BLOISl M, WILEN B M, et al. Treatment of municipal wastewater with aerobic granular sludge[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(2): 119-166. [4] 龙焙, 濮文虹, 杨昌柱, 等.不同生物选择段的SBR中好氧颗粒污泥的特性[J].中国给水排水, 2015, 31(5):16-21. [5] 游骐羽, 刘琳, 刘超翔, 等.粒径控制对好氧颗粒污泥处理高含氮废水的影响[J].环境工程, 2016, 34(3):32-37. [6] DEKREUK M K, HEIJNEN J J, VANLOOSDRECHT M C M. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge[J]. Biotechnology and Bioengineering, 2005, 90(6):761-769. [7] 刘绍根, 梅子鲲, 任祎博, 等.城市污水培养好氧颗粒污泥及其降解特性[J].中国给水排水, 2011, 27(15):95-98. [8] 李冬, 刘博, 王文琪, 等.除磷颗粒诱导的同步短程硝化反硝化除磷颗粒污泥工艺[J].环境科学, 2020, 41(2):867-875. [9] 郭海娟, 顾一宁, 马放, 等.好氧颗粒污泥处理市政污水性能与微生物特性研究[J].环境科学学报, 2020, 40(10):3688-3695. [10] 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京:中国环境科学出版社, 2002:252-354. [11] 郝桂珍, 范宇成, 徐利, 等.低温下好氧颗粒污泥强化造粒研究[J].中国给水排水, 2020, 36(19):32-38. [12] 王浩宇, 苏本生, 黄丹, 等. 好氧污泥颗粒化过程中 Zeta 电位与 EPS 的变化特性[J]. 环境科学, 2012, 33(5): 1614-1620. [13] LAGUNA A, OUATTARA A, GONZALEZ R O, et al. A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge[J]. Water Science & Technology, 1999, 40(8):1-8. [14] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5):1022-1030. [15] 陈茂霞, 周后珍, 朱晓华, 等. 考马斯亮蓝法检测活性污泥中蛋白质含量优化[J]. 环境科学与技术, 2015, 38(4): 1-5. [16] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical chemistry, 1956, 28(3): 350-356. [17] 王维红, 包文婷, 王燕杉.粒径对番茄酱废水好氧颗粒污泥性能的影响[J].精细化工, 2021, 38(2):380-386. [18] 王丽谦. 低碳市政污水好氧颗粒污泥培养及脱氮除磷性能研究[D]. 北京:北京化工大学, 2020. [19] 张程程. 低DO状态丝状菌膨胀的微生物表面特性[D].重庆:重庆大学, 2018. [20] 王佳琴. 好氧颗粒污泥反应器启动及胞外聚合物(EPS)对污泥聚集的作用研究[D].重庆:重庆大学, 2020. [21] 王香莲. 高氨氮(含酚)废水快速培养好氧颗粒污泥的试验研究[D]. 徐州:中国矿业大学, 2016. [22] HUANG C, LIU Q, LI Z L, et al. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions[J]. Water Research, 2021, 188: 116-526. [23] 王晓玲. 亚硝酸盐强化污泥发酵的机制与过程优化[D]. 北京:北京工业大学, 2019. [24] SEVIOUR R J, KRAGELUND C, KONG Y, et al. Ecophysiology of the Actinobacteria in activated sludge systems[J]. Antonie Van Leeuwenhoek, 2008, 94(1):21-33. [25] 李冬, 杨敬畏, 李悦, 等.缺氧/好氧交替连续流的生活污水好氧颗粒污泥运行及污染物去除机制[J].环境科学, 2021, 42(5):2385-2395. [26] FAN N S, QI R, HUANG B C, et al. Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control: a review[J]. Chemosphere, 2020, 244: 125371. [27] NOKHAL T H, SCHLEGEL H G. The regulation of hydrogenase formation as a differentiating character of strains of Paracoccus denitrificans[J].Antonie van Leeuwenhoek, 1980, 46(2):143-155. [28] CHEN H, LI A, CUI D, et al. Evolution of microbial community and key genera in the formation and stability of aerobic granular sludge under a high organic loading rate[J]. Bioresource Technology Reports, 2019, 7:100280. [29] 欧家丽, 高春娣, 韩颖璐, 等.温度对好氧颗粒污泥系统污泥膨胀的影响[J].中国环境科学, 2023, 43(4):1716-1723. [30] HE Q, XIE Z, FU Z, et al. Effects of phenol on extracellular polymeric substances and microbial communities from aerobic granular sludge treating low strength and salinity wastewater[J]. Science of the Total Environment, 2021, 752:141785. [31] LIU Z. Poly aluminum chloride (PAC) enhanced formation of aerobic granules: coupling process between physicochemical-biochemical effects[J]. Chemical Engineering Journal, 2016, 284:1127-1135. [32] GONZALEZ-MARTINEZ A, MUNOZ-PALAZON B, MAZA-MARQUEZ P, et al. Performance and microbial community structure of a polar Arctic Circle aerobic granular sludge system operating at low temperature[J]. Bioresource Technology, 2018, 256:22-29. [33] 姚源, 竺建荣, 唐敏, 等.好氧颗粒污泥技术处理乡镇污水应用[J].环境科学研究, 2018, 31(2):379-388. [34] HE Q, ZHANFG W, ZHANG S, et al. Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification, and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326:1223-1231.
点击查看大图
计量
- 文章访问数: 29
- HTML全文浏览量: 5
- PDF下载量: 2
- 被引次数: 0