EVALUATION AND CORRELATION ANALYSIS OF WATER/SEDIMENT POLLUTION STATUS IN CHENGDU SECTION OF THE TUOJIANG RIVER BASIN
-
摘要: 沱江流域成都段人口密集,河流污染问题突出。近年来,沱江流域污染问题受到广泛关注,污染状况已得到明显改善。在2022—2023年3次现场调查的基础上,采用内梅罗综合污染指数法评价了沱江流域成都段上覆水及沉积物的污染状况,并探究二者的相关性,以期为沱江流域成都段以及长江水生态环境保护治理提供依据。结果表明:水体最主要的超标因子为TN和COD,内梅罗综合污染评价发现水体处于中重度污染水平;沉积物主要污染物为TN、TP、Cr,内梅罗综合污染评价表明沉积物处于轻中度污染水平;水体与沉积物多项指标呈较强相关性,其中水体总磷与沉积物无机磷呈显著正相关,相关系数为0.506。沉积物污染物对水体有极大影响,因此控制河流外源污染的同时,也应加大对河流内源污染的治理。Abstract: The Chengdu Section of the Tuojiang River Basin is densely populated and has prominent river pollution problems. In recent years, the pollution problem has received attention and the situation has been significantly improved. Based on three field investigations from 2022 to 2023, the current pollution status of the overlying water and sediments in the Chengdu Section of the Tuojiang River Basin was evaluated using the Nemerow integrated pollution index method based on field investigations. The correlation between overlying water and sediment was sought to provide a basis for the management of water ecological protection in the Chengdu Section of the Tuojiang River Basin and the Yangtze River. The research results showed that: the most important exceedance factors of the water body were total nitrogen and chemical oxygen demand. The Nemerow comprehensive pollution assessment indicated that the water body was in a moderate to heavy pollution level. The main pollutants of the sediment were total nitrogen, total phosphorus, and heavy metal chromium. The Nemerow comprehensive pollution assessment indicated that the sediment was at light to moderate pollution level. There was a strong correlation between water and sediment, among which the total phosphorus of water was significantly positively correlated with inorganic phosphorus of sediment, and the correlation coefficient was 0.506. Sediment pollutants have a great influence on the water body, so the control of river pollution from external sources should also increase the management of river pollution from internal sources.
-
Key words:
- Tuojiang River Basin /
- nutritional salt /
- heavy metals /
- pollution status /
- correlation
-
[1] 粟文豪, 朱新萍, 王灵, 等.乌鲁木齐及周边区域河道沉积物氮磷赋存形态特征及污染评价[J].生态与农村环境学报, 2023, 39(12):1547-1558. [2] DAI D, LEI K, WANG R, et al. Evaluation of river restoration efforts and a sharp decrease in surface runoff for water quality improvement in North China[J].Environmental Research Letters[2024-06-11]. [3] Herbert R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiology Reviews, 1999, 23(5): 563-590. [4] 王书锦, 刘云根, 梁启斌等.罗时江河口湿地沉积物磷的空间分布及污染风险评价[J].环境工程学报, 2016, 10(2):955-962. [5] 朱元荣, 张润宇, 吴丰昌.滇池沉积物中氮的地球化学特征及其对水环境的影响[J].中国环境科学, 2011, 31(6):978-983. [6] 张云霞, 魏峣, 汪涛.沱江流域河流氮、磷浓度时空分布特征及污染状况评价[J].环境污染与防治, 2021, 43(8):1028-1034. [7] 唐金勇, 尹月鹏, 曹熙, 等.沉积物磷形态空间分布特征及释放风险评估:以沱江流域为例[J].中国环境科学, 2022, 42(9):4264-4273. [8] 徐青, 刘霞, 余晓平, 等.沱江沉积物-水界面磷形态垂向分布及时空变化特征[J].岩矿测试, 2019, 38(6):668-680. [9] 樊敏, 肖宇婷, 姚婧, 等.沱江流域水环境污染空间分布格局解析[J].安全与环境学报, 2022, 22(3):1619-1632. [10] 陈雨艳, 史箴, 周淼, 等."十三五"期间沱江流域水质及变化趋势[J].四川环境, 2023, 42(1):62-67. [11] 中华人民共和国环境保护部. 水质 采样技术指导:HJ 494—2009[S].北京:中国环境科学出版社, 2009. [12] 中华人民共和国环境保护部.水质.化学需氧量的测定.重铬酸盐法:HJ 828—2017[S]. 北京:中国环境科学出版社, 2017. [13] 中华人民共和国环境保护部.水质.氨氮的测定.纳氏试剂分光光度法:HJ 535—2009[S]. 北京:中国环境科学出版社, 2009. [14] 国家环境保护局.水质.硝酸盐氮的测定.酚二磺酸分光光度法:GB/T 7480—1987[S]. 北京:中国环境科学出版社, 1987. [15] 中华人民共和国环境保护部. 水质.总氮的测定.碱性过硫酸钾消解紫外分光光度法:HJ 636—2012[S]. 北京:中国环境科学出版社, 2012. [16] 国家环境保护局.水质.总磷的测定.钼酸铵分光光度法:GB/T 11893—1989[S]. 北京:中国环境科学出版社, 1989. [17] RUBAN V, LÓPEZ-SÁNCHEZ J F, PARDO P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments--a synthesis of recent works.[J].Fresenius Journal of Analytical Chemistry, 2001, 370(2/3):224-228. [18] 中华人民共和国环境保护部. 土壤.氨氮、亚硝酸盐氮、硝酸盐氮的测定.氯化钾溶液提取-分光光度法:HJ 634—2012[S]. 北京:中国环境科学出版社, 2012. [19] 中华人民共和国环境保护部. 土壤质量.全氮的测定.凯氏法:HJ 717—2014[S]. 北京:中国环境科学出版社, 2014. [20] 中华人民共和国生态环境部. 土壤和沉积物.铜、锌、铅、镍、铬的测定.火焰原子吸收分光光度法:HJ 419—2019[S]. 北京:中国环境科学出版社, 2019. [21] 郑玉凤, 章炜.火焰原子吸收分光光度法测定土壤中铜、锌、铅、镍、铬[J].中国资源综合利用, 2022, 40(7):36-38. [22] 汪涛, 龙虹竹, 赵原, 等.川中丘陵区自然沟渠水体氮磷污染状况评价[J].山地学报, 2016, 34(2):150-156. [23] 王佩, 卢少勇, 王殿武, 等.太湖湖滨带底泥氮、磷、有机质分布与污染评价[J].中国环境科学, 2012, 32(4):703-709. [24] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838—2002[S].北京:中国环境科学出版社, 2019. [25] 章艳红, 汪金坤, 陈俊华, 等.萍水河水质空间分布特征及水质评价对比研究[J].有色金属(冶炼部分), 2024, (3):125-133. [26] LEIVUORI M, NIEMISTOE L. Sedimentation of trace metals in the Gulf of Bothnia[J]. Chemosphere, 1995, 31(8):3839-3856. [27] 岳维忠, 黄小平, 孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J].海洋与湖沼, 2007(2):111-117. [28] 李任伟, 李禾, 李原, 等.黄河三角洲沉积物重金属、氮和磷污染研究[J].沉积学报, 2001(4):622-629. [29] 成杭新, 李括, 李敏, 等.中国城市土壤化学元素的背景值与基准值[J].地学前缘, 2014, 21(3):265-306. [30] 胡芸芸, 王永东, 李廷轩, 等.沱江流域农业面源污染排放特征解析[J].中国农业科学, 2015, 48(18):3654-3665. [31] 陈雨艳, 余恒, 向秋实, 等.沱江流域水环境质量分析[J].四川环境, 2015, 34(2):85-89. [32] 黄嘉, 杨萍, 梁维淑, 等.成都市水环境污染与环境质量的相关性分析[J].清洗世界, 2021, 37(4):48-49. [33] 胡贺, 翟世明, 秦汉, 等.2015—2020年岷、沱江流域成都段水环境质量评价及变化趋势分析[J].四川环境, 2022, 41(6):163-171. [34] 朱广伟, 陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学, 2001(3):272-279. [35] 卢少勇, 许梦爽, 金相灿, 等.长寿湖表层沉积物氮磷和有机质污染特征及评价[J].环境科学, 2012, 33(2):393-398. [36] 程先, 孙然好, 孔佩儒, 等.海河流域水体沉积物碳、氮、磷分布与污染评价[J].应用生态学报, 2016, 27(8):2679-2686. [37] ANDERSEN J M. Effect of nitrate concentration in lake water on phosphate release from the sediment[J]. Water research, 1982, 16(7): 1119-1126. [38] MA S N, WANG H J, WANG H Z, et al. Effects of nitrate on phosphorus release from lake sediments[J]. Water Research, 2021, 194: 116894. [39] WANG X J, KONG F L, LI Y, et al.Effect of simulated tidal cycle on DOM, nitrogen and phosphorus release from sediment in Dagu River-Jiaozhou Bay estuary[J].Science of the Total Environment, 2021, 783: 147158. [40] 王显丽, 栾风娇, 摆晓虎, 等.乌伦古湖上覆水水质因子与沉积物理化特性相关性研究[J].新疆环境保护, 2019, 41(3): 15-21.
点击查看大图
计量
- 文章访问数: 36
- HTML全文浏览量: 5
- PDF下载量: 1
- 被引次数: 0