中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晋城市秋冬季PM2.5组分特征及来源解析

郭前进

向虹霖, 刘力, 梁国宾, 张焕伟, 李聪明, 周畅, 韩思宇, 蒋建国. 有机垃圾水解固相残渣制备RDF及性能优化[J]. 环境工程, 2021, 39(3): 189-194,147. doi: 10.13205/j.hjgc.202103027
引用本文: 郭前进. 晋城市秋冬季PM2.5组分特征及来源解析[J]. 环境工程, 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
XIANG Hong-lin, LIU Li, LIANG Guo-bin, ZHANG Huan-wei, LI Cong-ming, ZHOU Chang, HAN Si-yu, JIANG Jian-guo. PREPARATION OF RDF BY HYDROLYSIS RESIDUES FROM ORGANIC WASTE AND PROPERTIES OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 189-194,147. doi: 10.13205/j.hjgc.202103027
Citation: GUO Qianjin. COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017

晋城市秋冬季PM2.5组分特征及来源解析

doi: 10.13205/j.hjgc.202407017
基金项目: 

大气重污染成因与治理攻关项目(DQGG-05-14)

详细信息
    作者简介:

    郭前进(1967-),男,高级工程师,主要研究方向为大气污染防治。jcguoqianjin@163.com

COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG

  • 摘要: 晋城市是我国重要的煤化工基地, 近年来PM2.5污染问题突出。采集了2018—2019年秋冬季晋城市3个监测站点的PM2.5样品, 分析了不同天气条件下的组分浓度(离子、元素和碳质)以及二次转化特征, 利用后向轨迹探究了区域传输对环境空气的影响, 并采用化学质量平衡模型进行了来源解析。结果表明:1)采样期间晋城市PM2.5日均浓度为86.1 μg/m3, 污染天PM2.5浓度(131.1μg/m3)是优良天(58.2 μg/m3)的2.3倍, 主要与污染天高湿静稳的气象条件有关。2)二次无机盐离子为晋城市PM2.5水溶性离子的主要成分(83.4%), 污染天二次无机盐离子的浓度(71.2 μg/m3)显著高于清洁天(24.6 μg/m3), 晋城市秋冬季SO2向 SO2-4的转化主要是非均相反应占主导,而NO-3的生成同时受气相氧化和非均相水解的影响; 晋城市秋冬季污染天OC和EC浓度相比清洁天分别上升了88.5%和83.0%。后向轨迹结果显示, 在不利气象条件影响下, 1月来自晋城市东南区域的短距离传输气团加重了污染过程,体现了区域联防联控的重要意义。源解析结果显示, 扬尘源(18.4%)、二次硝酸盐(16.5%)、燃煤源(15.9%)和机动车排放源(12.0%)是晋城市PM2.5主要来源。因此, 为有效降低晋城市秋冬季PM2.5污染, 需要加强机动车排放的管控, 减少秋冬季期间燃煤源的污染物排放, 降低NO2、SO2等二次污染物前体物的排放。
  • [1] ZHANG Q H, ZHANG J P, XUE H W. The challenge of improving visibility in Beijing[J]. Atmospheric Chemistry and Physics, 2010, 10(16): 7821-7827.
    [2] YU S, LIU W, XU Y, et al. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: source apportionment and seasonal variation[J]. Science of the Total Environment, 2019, 650: 277-287.
    [3] LIU B, SONG N, DAI Q, et al. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China[J]. Atmospheric Research, 2016, 170: 23-33.
    [4] ZHANG R, JING J, TAO J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective[J]. Atmospheric Chemistry and Physics, 2013, 13(14): 7053-7074.
    [5] DU W, HONG Y, XIAO H, et al. Chemical characterization and source apportionment of PM2.5 during spring and winter in the Yangtze River Delta, China[J]. Aerosol and Air Quality Research, 2017, 17(9): 2165-2180.
    [6] WANG Y, JIA C, TAO J, et al. Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China[J]. Science of the Total Environment 2016, 573: 1031-1040.
    [7] TIAN S, LIU Y, WANG J, et al. Chemical compositions and source analysis of PM during autumn and winter in a heavily polluted city in China[J]. Atmosphere, 2020, 11(4): 336.
    [8] TANG R, WU Z, LI X, et al. Primary and secondary organic aerosols in summer of 2016 in Beijing[J]. Atmospheric Chemistry and Physics, 2018, 18(6): 4055-4068.
    [9] GAO S, YANG W, ZHANG H, et al. Estimating representative background PM2.5 concentration in heavily polluted areas using baseline separation technique and chemical mass balance model[J]. Atmospheric Environment, 2018, 174: 180-187.
    [10] ZHOU J, XIONG Y, XING Z, et al. Characterizing and sourcing ambient PM2.5 over key emission regions in China Ⅱ: organic molecular markers and CMB modeling[J]. Atmospheric Environment, 2017, 163: 57-64.
    [11] LU H, LIN S, MWANGI J K, et al. Characteristics and source apportionment of atmospheric PM2.5 at a coastal city in Southern Taiwan[J]. Aerosol and Air Quality Research, 2016, 16(4): 1022-1034.
    [12] 杨帆, 闫雨龙, 戈云飞, 等. 晋城市冬季环境空气中挥发性有机物的污染特征及来源解析[J]. 环境科学, 2018, 39(9): 4042-4050.
    [13] LIU Q, LIANG S, XU J. Characteristics and sources of air pollution in southern Shanxi Province[J]. Sustainability, 2022, 14(20): 13511.
    [14] GUO D, WANG R, ZHAO P. Spatial distribution and source contributions of PM2.5 concentrations in Jincheng, China[J]. Atmospheric Pollution Research, 2020, 11(8): 1281-1289.
    [15] 马帅, 王春迎, 刘孟雄, 等. 晋城市冬、春季 PM2.5 和PM10 污染水平时空分布及其与气象因子的关系[J]. 气象与环境科学, 2020, 43(1): 96-103.
    [16] TURPIN B J, LIM H. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass[J]. Aerosol Science and Technology, 2001, 35(1): 602-610.
    [17] XU Q, WANG S, JIANG J, et al. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China[J]. Science of the Total Environment 2019, 689: 1293-1303.
    [18] WANG S, YIN S, ZHANG R, et al. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China[J]. Science of the Total Environment, 2019, 660: 47-56.
    [19] WATSON J G, COOPER J A, HUNTZICKER J J. The effective variance weighting for least squares calculations applied to the mass balance receptor model[J]. Atmospheric Environment, 1984, 18(7): 1347-1355.
    [20] 张毅. 长治市秋冬季PM2.5组分特征及来源解析[J]. 环境化学, 2020, 39(6): 1699-1708.
    [21] 王振宇, 李永斌, 郭凌, 等. 基于多种新型受体模型的PM2.5来源解析对比[J]. 环境科学, 2022, 43(2): 608-618.
    [22] 王成, 闫雨龙, 谢凯, 等. 阳泉市秋冬季PM2.5化学组分及来源分析[J]. 环境科学, 2020, 41(3): 1036-1044.
    [23] 陈楚, 王体健, 李源昊, 等. 濮阳市秋冬季大气细颗粒物污染特征及来源解析[J]. 环境科学, 2019, 40(8): 3421-3430.
    [24] DUAN X, YAN Y, XIE K, et al. Impact of primary emission variations on secondary inorganic aerosol formation: prospective from COVID-19 lockdown in a typical northern China city[J]. Environmental Pollution, 2023, 323: 121355.
    [25] WANG C, YAN Y, NIU Y, et al. Formation and driving factors of sulfate in PM2.5 at a high-level atmospheric SO2 city of Yangquan in China[J]. Air Quality, Atmosphere & Health, 2020.
    [26] 刘素, 马彤, 杨艳, 等. 太原市冬季 PM2.5 化学组分特征与来源解析[J]. 环境科学, 2019, 40(4): 1537-1544.
    [27] JIANG N, LI Q, SU F, et al. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China[J]. Journal of Environmental Sciences, 2018, 66: 188-198.
    [28] 吴琳, 沈建东, 冯银厂, 等. 杭州市灰霾与非灰霾日不同粒径大气颗粒物来源解析[J]. 环境科学研究, 2014, 27(4): 373-381.
    [29] CHOW J C, WATSON J G, LU Z, et al. Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations During SJVAQS/AUSPEX[Z]. Oxford: Elsevier Science, 1996: 2079-2112.
    [30] 邓萌杰, 雷雨果, 成海容. 华中背景地区大气颗粒物中水溶性离子特征与来源解析[J]. 中国环境科学, 2023.
    [31] 丁萌萌, 周健楠, 刘保献, 等. 2015年北京城区大气PM2.5中NH+4、NO-3、SO2-4及前体气体的污染特征[J]. 环境科学, 2017, 38(4): 1307-1316.
    [32] CHEN X, WANG H, LU K, et al. Field determination of nitrate formation pathway in winter Beijing[J]. Environmental Science & Technology, 2020, 54(15): 9243-9253.
    [33] DUAN X, YAN Y, PENG L, et al. Role of ammonia in secondary inorganic aerosols formation at an ammonia-rich city in winter in north China: a comparative study among industry, urban, and rural sites[J]. Environmental Pollution, 2021, 291: 118151.
    [34] 马杰利, 罗达通, 刘欣, 等. 长株潭城市群 PM2.5中二次无机离子特征及生成机制[J]. 环境科学, 2023, 44(11): 5975-5985.
    [35] WU P, HUANG X, ZHANG J, et al. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis[J]. Environmental Science and Pollution Research, 2019, 26(3): 2649-2661.
  • 期刊类型引用(2)

    1. 乔欢,贾文飞. 基于一维河网模型的崇明岛水环境容量计算. 绿色科技. 2024(10): 127-131+142 . 百度学术
    2. 伏凤艳. 平洲水道流量监测结果及污染来源初步分析. 皮革制作与环保科技. 2024(21): 132-134+137 . 百度学术

    其他类型引用(0)

  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-06-12
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回