中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晋城市秋冬季PM2.5组分特征及来源解析

郭前进

郭前进. 晋城市秋冬季PM2.5组分特征及来源解析[J]. 环境工程, 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
引用本文: 郭前进. 晋城市秋冬季PM2.5组分特征及来源解析[J]. 环境工程, 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
GUO Qianjin. COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
Citation: GUO Qianjin. COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017

晋城市秋冬季PM2.5组分特征及来源解析

doi: 10.13205/j.hjgc.202407017
基金项目: 

大气重污染成因与治理攻关项目(DQGG-05-14)

详细信息
    作者简介:

    郭前进(1967-),男,高级工程师,主要研究方向为大气污染防治。jcguoqianjin@163.com

COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG

  • 摘要: 晋城市是我国重要的煤化工基地, 近年来PM2.5污染问题突出。采集了2018—2019年秋冬季晋城市3个监测站点的PM2.5样品, 分析了不同天气条件下的组分浓度(离子、元素和碳质)以及二次转化特征, 利用后向轨迹探究了区域传输对环境空气的影响, 并采用化学质量平衡模型进行了来源解析。结果表明:1)采样期间晋城市PM2.5日均浓度为86.1 μg/m3, 污染天PM2.5浓度(131.1μg/m3)是优良天(58.2 μg/m3)的2.3倍, 主要与污染天高湿静稳的气象条件有关。2)二次无机盐离子为晋城市PM2.5水溶性离子的主要成分(83.4%), 污染天二次无机盐离子的浓度(71.2 μg/m3)显著高于清洁天(24.6 μg/m3), 晋城市秋冬季SO2向 SO2-4的转化主要是非均相反应占主导,而NO-3的生成同时受气相氧化和非均相水解的影响; 晋城市秋冬季污染天OC和EC浓度相比清洁天分别上升了88.5%和83.0%。后向轨迹结果显示, 在不利气象条件影响下, 1月来自晋城市东南区域的短距离传输气团加重了污染过程,体现了区域联防联控的重要意义。源解析结果显示, 扬尘源(18.4%)、二次硝酸盐(16.5%)、燃煤源(15.9%)和机动车排放源(12.0%)是晋城市PM2.5主要来源。因此, 为有效降低晋城市秋冬季PM2.5污染, 需要加强机动车排放的管控, 减少秋冬季期间燃煤源的污染物排放, 降低NO2、SO2等二次污染物前体物的排放。
  • [1] ZHANG Q H, ZHANG J P, XUE H W. The challenge of improving visibility in Beijing[J]. Atmospheric Chemistry and Physics, 2010, 10(16): 7821-7827.
    [2] YU S, LIU W, XU Y, et al. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: source apportionment and seasonal variation[J]. Science of the Total Environment, 2019, 650: 277-287.
    [3] LIU B, SONG N, DAI Q, et al. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China[J]. Atmospheric Research, 2016, 170: 23-33.
    [4] ZHANG R, JING J, TAO J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective[J]. Atmospheric Chemistry and Physics, 2013, 13(14): 7053-7074.
    [5] DU W, HONG Y, XIAO H, et al. Chemical characterization and source apportionment of PM2.5 during spring and winter in the Yangtze River Delta, China[J]. Aerosol and Air Quality Research, 2017, 17(9): 2165-2180.
    [6] WANG Y, JIA C, TAO J, et al. Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China[J]. Science of the Total Environment 2016, 573: 1031-1040.
    [7] TIAN S, LIU Y, WANG J, et al. Chemical compositions and source analysis of PM during autumn and winter in a heavily polluted city in China[J]. Atmosphere, 2020, 11(4): 336.
    [8] TANG R, WU Z, LI X, et al. Primary and secondary organic aerosols in summer of 2016 in Beijing[J]. Atmospheric Chemistry and Physics, 2018, 18(6): 4055-4068.
    [9] GAO S, YANG W, ZHANG H, et al. Estimating representative background PM2.5 concentration in heavily polluted areas using baseline separation technique and chemical mass balance model[J]. Atmospheric Environment, 2018, 174: 180-187.
    [10] ZHOU J, XIONG Y, XING Z, et al. Characterizing and sourcing ambient PM2.5 over key emission regions in China Ⅱ: organic molecular markers and CMB modeling[J]. Atmospheric Environment, 2017, 163: 57-64.
    [11] LU H, LIN S, MWANGI J K, et al. Characteristics and source apportionment of atmospheric PM2.5 at a coastal city in Southern Taiwan[J]. Aerosol and Air Quality Research, 2016, 16(4): 1022-1034.
    [12] 杨帆, 闫雨龙, 戈云飞, 等. 晋城市冬季环境空气中挥发性有机物的污染特征及来源解析[J]. 环境科学, 2018, 39(9): 4042-4050.
    [13] LIU Q, LIANG S, XU J. Characteristics and sources of air pollution in southern Shanxi Province[J]. Sustainability, 2022, 14(20): 13511.
    [14] GUO D, WANG R, ZHAO P. Spatial distribution and source contributions of PM2.5 concentrations in Jincheng, China[J]. Atmospheric Pollution Research, 2020, 11(8): 1281-1289.
    [15] 马帅, 王春迎, 刘孟雄, 等. 晋城市冬、春季 PM2.5 和PM10 污染水平时空分布及其与气象因子的关系[J]. 气象与环境科学, 2020, 43(1): 96-103.
    [16] TURPIN B J, LIM H. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass[J]. Aerosol Science and Technology, 2001, 35(1): 602-610.
    [17] XU Q, WANG S, JIANG J, et al. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China[J]. Science of the Total Environment 2019, 689: 1293-1303.
    [18] WANG S, YIN S, ZHANG R, et al. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China[J]. Science of the Total Environment, 2019, 660: 47-56.
    [19] WATSON J G, COOPER J A, HUNTZICKER J J. The effective variance weighting for least squares calculations applied to the mass balance receptor model[J]. Atmospheric Environment, 1984, 18(7): 1347-1355.
    [20] 张毅. 长治市秋冬季PM2.5组分特征及来源解析[J]. 环境化学, 2020, 39(6): 1699-1708.
    [21] 王振宇, 李永斌, 郭凌, 等. 基于多种新型受体模型的PM2.5来源解析对比[J]. 环境科学, 2022, 43(2): 608-618.
    [22] 王成, 闫雨龙, 谢凯, 等. 阳泉市秋冬季PM2.5化学组分及来源分析[J]. 环境科学, 2020, 41(3): 1036-1044.
    [23] 陈楚, 王体健, 李源昊, 等. 濮阳市秋冬季大气细颗粒物污染特征及来源解析[J]. 环境科学, 2019, 40(8): 3421-3430.
    [24] DUAN X, YAN Y, XIE K, et al. Impact of primary emission variations on secondary inorganic aerosol formation: prospective from COVID-19 lockdown in a typical northern China city[J]. Environmental Pollution, 2023, 323: 121355.
    [25] WANG C, YAN Y, NIU Y, et al. Formation and driving factors of sulfate in PM2.5 at a high-level atmospheric SO2 city of Yangquan in China[J]. Air Quality, Atmosphere & Health, 2020.
    [26] 刘素, 马彤, 杨艳, 等. 太原市冬季 PM2.5 化学组分特征与来源解析[J]. 环境科学, 2019, 40(4): 1537-1544.
    [27] JIANG N, LI Q, SU F, et al. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China[J]. Journal of Environmental Sciences, 2018, 66: 188-198.
    [28] 吴琳, 沈建东, 冯银厂, 等. 杭州市灰霾与非灰霾日不同粒径大气颗粒物来源解析[J]. 环境科学研究, 2014, 27(4): 373-381.
    [29] CHOW J C, WATSON J G, LU Z, et al. Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations During SJVAQS/AUSPEX[Z]. Oxford: Elsevier Science, 1996: 2079-2112.
    [30] 邓萌杰, 雷雨果, 成海容. 华中背景地区大气颗粒物中水溶性离子特征与来源解析[J]. 中国环境科学, 2023.
    [31] 丁萌萌, 周健楠, 刘保献, 等. 2015年北京城区大气PM2.5中NH+4、NO-3、SO2-4及前体气体的污染特征[J]. 环境科学, 2017, 38(4): 1307-1316.
    [32] CHEN X, WANG H, LU K, et al. Field determination of nitrate formation pathway in winter Beijing[J]. Environmental Science & Technology, 2020, 54(15): 9243-9253.
    [33] DUAN X, YAN Y, PENG L, et al. Role of ammonia in secondary inorganic aerosols formation at an ammonia-rich city in winter in north China: a comparative study among industry, urban, and rural sites[J]. Environmental Pollution, 2021, 291: 118151.
    [34] 马杰利, 罗达通, 刘欣, 等. 长株潭城市群 PM2.5中二次无机离子特征及生成机制[J]. 环境科学, 2023, 44(11): 5975-5985.
    [35] WU P, HUANG X, ZHANG J, et al. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis[J]. Environmental Science and Pollution Research, 2019, 26(3): 2649-2661.
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回