CHARACTERISTICS AND INFLUENCING FACTORS OF ATMOSPHERIC NH3 POLLUTION IN SHIHEZI
-
摘要: 大气氨(NH3)对二次气溶胶的形成有重要影响。为研究石河子市大气NH3污染特征,于2020年12月—2021年11月对石河子市NH3浓度进行了连续观测,结合大气NH3排放特征和同期气象因素的变化特征分析了石河子市NH3浓度水平、污染特征和影响因素。结果表明:石河子市大气ρ(NH3)年均为21.0 μg/m3,ρ(NH3)季均分布为20.2~21.7 μg/m3,季节变化幅度较小。农业源是石河子市大气NH3的主要贡献源;而冬季大气NH3主要来源于工业烟气脱硝过程中的氨逃逸,冬季持续的低边界层高度和低风速致使大气扩散条件转差,不利的扩散条件是冬季NH3浓度累积升高的重要原因。冬季加大对烟气脱硝过程中氨逃逸的治理力度有利于降低石河子市冬季大气NH3浓度。石河子市4个季节大气NH3浓度均表现为白天高夜间低,且NH3浓度在春季和冬季呈单峰日变化特征,峰值分别出现在12:00和16:00;在夏季和秋季呈多峰日变化特征,最大峰值分别出现在11:00和13:00。与国内其他城市相比,石河子市4个季节大气NH3浓度日间峰值出现时间晚1~3 h。随机森林算法对大气NH3浓度影响因素的定量评估表明,4个季节气象因素对NH3浓度的影响分别达到了63.6%、58.8%、73.9%和64.5%,气象因素是大气NH3浓度变化的主要影响因素。Abstract: Atmospheric ammonia (NH3) has an important impact on the formation of secondary aerosols. To investigate the characteristics of atmospheric NH3 pollution in Shihezi, the atmospheric NH3 concentration was observed continuously from December 2020 to November 2021, and the magnitude level, variation characteristics, and influencing factors of atmospheric NH3 in Shihezi were analyzed, in combination with the characteristics of atmospheric NH3 emissions and the characteristics of concurrent meteorological parameters. The results show that the annual average concentration of atmospheric NH3 in Shihezi was 21.0 μg/m3, the average concentration of atmospheric NH3 in the four seasons ranged from 20.2 μg/m3 to 21.7 μg/m3, with a small seasonal fluctuation. In winter, the main source of atmospheric NH3 in Shihezi was the escape of ammonia during the industrial flue gas denitrification process, and the continuous low boundary layer height and low wind speed in winter led to the deterioration of atmospheric diffusion conditions. The unfavorable diffusion conditions were an important reason for the accumulation of atmospheric NH3 concentration in winter. Increasing the control of ammonia escape during flue gas denitrification was beneficial to reducing the atmospheric NH3 concentration in Shihezi. The diurnal variation of atmospheric NH3 concentration showed a pattern of higher during the day and lower at night in Shihezi in all seasons, with the daily variation of atmospheric NH3 concentration being highest in spring and lowest in winter. The atmospheric NH3 concentrations in spring and winter showed a single-peak pattern, with dual peaks at 12:00 and 16:00, respectively, and summer and autumn atmospheric NH3 concentrations showed a multi-peak pattern, with maximum peaks at 11:00 and 13:00, respectively. Compared with other cities in China, the daytime peak of atmospheric NH3 concentration in Shihezi appeared 1 to 3 hours later. The quantitative evaluation of the influencing factors of atmospheric NH3 concentration by the random forest algorithm showed that the influence of meteorological factors on atmospheric NH3 in the four seasons reached 63.6%, 58.8%, 73.9%, and 64.5%, respectively, and meteorological factors were the main influencing factors of atmospheric NH3 concentration.
-
Key words:
- NH3 /
- pollution characteristics /
- influencing factors /
- Shihezi
-
[1] BERGSTRÖM A K, JANSSON M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere[J]. Global Change Biology, 2006, 12(4): 635-643. [2] CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179): 712-715. [3] 薛文博, 许艳玲, 唐晓龙, 等.中国氨排放对PM2.5污染的影响[J].中国环境科学, 2016, 36(12):3531-3539. [4] HUANG X, SONG Y, LI M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1). [5] RENNER E, WOLKE R. Modelling the formation and atmospheric transport of secondary inorganic aerosols with special attention to regions with high ammonia emissions[J]. Atmospheric Environment, 2010, 44(15): 1904-1912. [6] HUANG R J, ZHANG Y, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. [7] HODAS N, SULLIVAN A P, SKOG K, et al. Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation[J]. Environmental Science & Technology, 2014, 48(19): 11127-11136. [8] GE B, XU X, MA Z, et al. Role of ammonia on the feedback between awc and inorganic aerosol formation during heavy pollution in the North China Plain[J]. Earth and Space Science, 2019, 6(9): 1675-1693. [9] ZHAO M, WANG S, TAN J, et al. Variation of urban atmospheric ammonia pollution and its relation with PM2.5 chemical property in winter of Beijing, China[J]. Aerosol and Air Quality Research, 2016, 16(6): 1378-1389. [10] PARK J, KIM E, OH S, et al. Contributions of ammonia to high concentrations of PM2.5 in an Urban Area[J]. Atmosphere, 2021, 12(12): 1676. [11] 邵生成, 常运华, 曹芳, 等.南京城市大气氨-铵的高频演化及其气粒转化机制[J].环境科学, 2019, 40(10):4355-4363. [12] 谭静瑶, 王丽涛, 刘振通, 等.邯郸市NH3污染特征及其在PM2.5形成中的作用[J].环境化学, 2021, 40(7):2035-2046. [13] LV S, WANG F, WU C, et al. Gas-to-aerosol phase partitioning of atmospheric water-soluble organic compounds at a rural site in China: an enhancing effect of NH3 on SOA formation[J]. Environmental Science & Technology, 2022, 56(7): 3915-3924. [14] GU B, ZHANG L, van DINGENEN R, et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution[J]. Science, 2021, 374(6568): 758. [15] LIU Z, ZHOU M, CHEN Y, et al. The nonlinear response of fine particulate matter pollution to ammonia emission reductions in North China[J]. Environmental Research Letters, 2021, 16(3): 034014. [16] 许艳玲, 薛文博, 雷宇, 等.中国氨减排对控制PM2.5污染的敏感性研究[J].中国环境科学, 2017, 37(7):2482-2491. [17] 刘学军, 沙志鹏, 宋宇, 等.我国大气氨的排放特征、减排技术与政策建议[J].环境科学研究, 2021, 34(1):149-157. [18] 孟德友.农业及城市典型挥发源氨排放和氨态氮同位素源谱特征[D]. 南京:南京信息工程大学, 2021. [19] 程龙, 郭秀锐, 程水源, 等.京津冀农业源氨排放对PM2.5的影响[J].中国环境科学, 2018, 38(4):1579-1588. [20] ZENG Y, TIAN S, PAN Y. Revealing the sources of atmospheric ammonia: a review[J]. Current Pollution Reports, 2018, 4(3): 189-197. [21] PU W, MA Z, COLLETT JR J L, et al. Regional transport and urban emissions are important ammonia contributors in Beijing, China[J]. Environmental Pollution, 2020, 265: 115062. [22] GU M, PAN Y, WALTERS W W, et al. Vehicular emissions enhanced ammonia concentrations in winter mornings: insights from diurnal nitrogen isotopic signatures[J]. Environmental Science & Technology, 2022, 56(3): 1578-1585. [23] CHANG Y, ZOU Z, DENG C, et al. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai[J]. Atmospheric Chemistry and Physics, 2016, 16(5): 3577-3594. [24] PERRINO C, CATRAMBONE M, DI BUCCHIANICO A D M, et al. Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions[J]. Atmospheric Environment, 2002, 36(34): 5385-5394. [25] 何凯杰, 李刚, 程苗苗, 等.天山北坡典型工业城市冬季大气铵盐污染特征及其赋存形式[J].环境科学研究:1-13. [26] HE Y, PAN Y, ZHANG G, et al. Tracking ammonia morning peak, sources and transport with 1 Hz measurements at a rural site in North China Plain[J]. Atmospheric Environment, 2020, 235. [27] MARTIN N A, FERRACCI V, CASSIDY N, et al. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures[J]. Applied Physics B, 2016, 122: 1-11. [28] VON BOBRUTZKI K, BRABAN C, FAMULARI D, et al. Field inter-comparison of eleven atmospheric ammonia measurement techniques[J]. Atmospheric Measurement Techniques, 2010, 3(1): 91-112. [29] 杨欣, 何友江, 廉涵阳, 等.天山北坡区域大气污染特征及冬季重污染成因分析:以石河子市为例[J].环境工程技术学报, 2023, 13(2):483-490. [30] 环境保护部. 大气氨源排放清单编制技术指南(试行)[Z].北京:环境保护部, 2014-08-28[2021-04-07]. [31] 徐发昭, 李净, 褚馨德, 等.基于MODIS数据与多机器学习法的日PM2.5模拟研究[J].中国环境科学, 2022, 42(6):2523-2529. [32] HU X, BELLE J H, MENG X, et al. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach[J]. Environmental Science & Technology, 2017, 51(12): 6936-6944. [33] BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32. [34] PAN Y, TIAN S, LIU D, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-stable isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 2016, 50(15): 8049-8056. [35] WU C, WANG G, LI J, et al. Non-agricultural sources dominate the atmospheric NH3 in Xi'an, a megacity in the semi-arid region of China[J]. Science of the Total Environment, 2020, 722: 137756. [36] 鲁胜坤, 晁娜, 陈金媛, 等.浙江省2013—2020年人为源氨排放清单[J].中国环境科学, 2022, 42(10):4525-4536. [37] 计尧, 王琛, 卢轩, 等.郑州市大气氨排放清单及驱动力分析[J].环境科学, 2021, 42(11):5220-5227. [38] 李香, 吴水平, 姜炳棋, 等.2015—2020年厦漳泉地区大气氨排放清单及分布特征[J].环境科学, 2022, 43(11):4914-4923. [39] 邵蕊, 吕建华, 徐琬莹, 等.青岛市人为源氨排放清单及分布特征[J].环境科学学报, 2021, 41(11):4449-4458. [40] 赵旻江.北京地区大气氨污染特征及其对细颗粒物的影响[D]. 北京:清华大学, 2017. [41] 许稳, 金鑫, 罗少辉, 等.西宁近郊大气氮干湿沉降研究[J].环境科学, 2017, 38(4):1279-88. [42] 刘元隆, 吴水平.福建大气氨的浓度特征[C]//第十二届全国气溶胶会议暨第十三届海峡两岸气溶胶技术研讨会, 中国重庆, 2015. [43] ZHANG Y, TANG A, WANG D, et al. The vertical variability of ammonia in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 2018, 18(22): 16385-16398. [44] 张国贤, 胡仁志, 谢品华, 等.基于离轴积分腔输出光谱对泰州大气NH3浓度观测与分析[J].光谱学与光谱分析, 2021, 41(2):360-367. [45] 吕雪梅.典型排放源大气活性氮浓度和氨同位素特征及城市大气氨来源解析[D]. 济南:山东大学, 2020. [46] 兰子濡, 林伟立.北京市NH3的长期变化特征研究[C]//中国环境科学学会2022年科学技术年会, 中国江西南昌, 2022. [47] BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20: 8092-8131. [48] 丁萌萌, 周健楠, 刘保献, 等.2015年北京城区大气PM2.5中NH+4、NO-3、SO2-4及前体气体的污染特征[J].环境科学, 2017, 38(4):1307-1316. [49] 张众志, 魏雪峰, 苗云阁, 等.新疆天山北坡低层大气稀释扩散能力的季节性差异和量化研究[J].环境科学研究, 2022, 35(7):1564-1572. [50] 喻鹏.石河子垦区春播工作拉开序幕[Z].石河子零距离, 2019.03.27. [51] 新疆石河子市人民政府.一四四团召开粮食夏收工作现场会[Z].2023.07.10. [52] 冯炎鹏, 张军科, 黄小娟, 等.成都夏冬季PM2.5中水溶性无机离子污染特征[J].环境科学, 2020, 41(7):3012-3020. [53] 马儒龙, 王章玮, 张晓山.城市绿化林中大气氨浓度垂直分布观测[J].环境化学, 2021, 40(7):2028-2034. [54] 吴佳伟, 王祖武, 陈楠, 等.军运会前后武汉市大气氨-铵气/粒转化监测研究[J].环境科学与技术, 2020, 43(5):132-138. [55] TENG X, HU Q, ZHANG L, et al. Identification of major sources of atmospheric NH3 in an urban environment in Northern China during wintertime[J]. Environmental Science & Technology, 2017, 51(12): 6839-6848. [56] HU Q, ZHANG L, EVANS G J, et al. Variability of atmospheric ammonia related to potential emission sources in downtown Toronto, Canada[J]. Atmospheric Environment, 2014, 99: 365-373. [57] SUTTON M A, REIS S, RIDDICK S N, et al. Towards a climate-dependent paradigm of ammonia emission and deposition[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621). [58] MENG Z, LIN W, ZHANG R, et al. Summertime ambient ammonia and its effects on ammonium aerosol in urban Beijing, China[J]. Science of the Total Environment, 2017, 579: 1521-1530. [59] HU M, WU Z, SLANINA J, et al. Acidic gases, ammonia and water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China[J]. Atmospheric Environment, 2008, 42(25): 6310-6320.
点击查看大图
计量
- 文章访问数: 15
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0