SPATIOTEMPORAL AGGREGATION CHANGE PATTERN OF PM2.5 AND O3 CONCENTRATION IN FUJIAN PROVINCE,CHINA
-
摘要: 基于福建省环境监测站点2017—2021年PM2.5和O3日均浓度数据,探讨了不同时间尺度下PM2.5与O3浓度变化特征,并采用单变量和双变量的空间自相关分析方法探究PM2.5和O3污染潜在的空间关联性。结果表明:近5年福建省PM2.5和O3年均浓度整体呈下降趋势,年均浓度变化趋势较为同步。PM2.5月均浓度高值出现在1—2,11—12月,低值出现在6—8月,月变化呈"U"形分布。O3月均浓度高值出现在4—5,9—10月,低值出现在1,12月,月变化呈双峰("M")形分布。PM2.5和O3浓度在1—10月呈较强正相关,11—12月呈负相关。不同PM2.5浓度污染水平下,O3浓度变化呈现差异性,当ρ(PM2.5)<45 μg/m3时,PM2.5和O3浓度呈协同增长的正相关,而当ρ(PM2.5)>45 μg/m3时,两者呈负相关。PM2.5和O3年均浓度、季均浓度均呈显著的空间正自相关,表现为西北方向呈L-L聚集区,主要分布在龙岩市、三明市和南平市,东南方向呈H-H聚集区,主要分布在福州市、莆田市和漳州市,PM2.5和O3年均浓度、季均浓度的空间分布具有显著的聚集性和相似性。Abstract: Based on the daily average concentration data of PM2.5 and O3 from environmental monitoring stations in Fujian Province from 2017 to 2021, the change characteristics and correlation of PM2.5 and O3 concentrations in different time scales were discussed, and the potential spatial correlation of PM2.5 and O3 pollution was explored by univariate and bivariate spatial autocorrelation analysis methods. The results showed that the annual average concentrations of PM2.5 and O3 in Fujian Province showed an overall downward trend in the past five years, and the trend of annual average concentration change was relatively synchronous. The high monthly average concentration of PM2.5 appeared in January to February, and November to December, and the low value appeared in June to August. The monthly variation showed a "U" distribution with high points at both ends and a low point in the middle. The high monthly average concentration of O3 appeared in April to May and September to October, the low value appeared in January and December, and the monthly variation showed a bimodal "M" distribution. The concentrations of PM2.5 and O3 were positively correlated from January to October, and negatively correlated from November to December. Under different concentrations of PM2.5 pollution, the change in O3 concentration was different. When the concentration of PM2.5 was less than 45 μg/m3, there was a positive correlation between PM2.5 and O3 concentration, while when the concentration of PM2.5 was more than 45 μg/m3, there was a negative correlation between them. There was a spatial positive autocorrelation between the average annual and seasonal concentrations of PM2.5 and O3, the L-L clustering area was located in the northwest, mainly distributed in Longyan, Sanming, and Nanping, and the H-H clustering area was located in the southeast, mainly distributed in Fuzhou, Putian, Xiamen and Zhangzhou. The spatial distribution of the annual and the seasonal average concentration of PM2.5 and O3 had obvious clustering and similarity.
-
Key words:
- Fujian Province /
- PM2.5 /
- O3 /
- correlation /
- aggregation
-
[1] 陈楠, 陈立, 王莉莉, 等. 2015—2020年湖北省PM2.5和臭氧复合污染特征演变分析[J]. 环境科学研究, 2022, 35(3): 659-672. [2] GAO L, YUE X, MENG X Y, et al. Comparison of ozone and PM2.5 concentrations over urban, suburban, and background sites in China[J]. Advances in Atmospheric Sciences, 2020, 37(12): 1297-1309. [3] WANG P F, GUO H, HU J L, et al. Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China[J]. Science of the Total Environment, 2019, 662: 297-306. [4] 易建华, 吴晓芳, 王丽云, 等. PM2.5对呼吸系统疾病的影响及其机制的研究进展[J]. 西安交通大学学报(医学版), 2019, 40(1): 167-172. [5] 魏文静, 谢炳庚, 周楷淳, 等. 2013—2018年山东省大气PM2.5和PM10污染时空变化及其影响因素[J]. 环境工程, 2020, 38(12): 103-111. [6] LIU H, LIU S, XUE B R, et al. Ground-level ozone pollution and its health impacts in China[J]. Atmospheric Environment, 2018, 173: 223-230. [7] 周胜, 黄报远, 陈慧英, 等. 珠三角城市群PM2.5和O3污染特征及VOCs组分敏感性分析[J]. 环境工程, 2020, 38(1): 42-47. [8] 花丛, 江琪, 迟茜元, 等. 我国中东部地区2015—2020年夏半年PM2.5和臭氧复合污染气象特征分析[J]. 环境科学研究, 2022, 35(3): 650-658. [9] 孙金金, 谢晓栋, 秦墨梅, 等. 不同时间尺度上PM2.5与臭氧协同关系及其影响因素分析[J]. 科学通报, 2022, 67(18): 2018-2028. [10] 康平, 侯静雯, 冯浩鹏, 等. 成都市PM2.5和O3复合污染特征及相互作用研究[J]. 环境科学学报, 2022, 42(10): 80-90. [11] 鲍冰逸, 李友平, 文烨, 等. 四川省重点城市PM2.5-O3复合污染的非线性相互作用[J]. 西华师范大学学报(自然科学版), 2023, 44(3): 244-252. [12] 牛笑笑, 钟艳梅, 杨璐, 等. 2015—2020年中国城市PM2.5-O3复合污染时空演变特征[J].环境科学, 2023, 44(4): 1130-1140. [13] 裘彦挺, 吴志军, 尚冬杰, 等. 我国城市大气PM2.5与O3浓度相关性的时空特征分析[J].科学通报, 2022, 67(18): 2008-2017. [14] CHU B, MA Q, LIU J, et al. Air pollutant correlations in China: secondary air pollutant responses to NOx and SO2 control[J]. Environmental Science & Technology, 2020, 7: 695-700. [15] 张宇静, 赵天良, 殷翀之, 等. 徐州市大气PM2.5与O3作用关系的季节变化[J]. 中国环境科学, 2019, 39(6): 2267-2272. [16] 姚懿娟, 王美圆, 曾春玲, 等. 广州不同站点类型PM2.5与O3污染特征及相互作用研究[J]. 中国环境科学, 2021, 41(10): 4495-4506. [17] DARAND M, DOSTKAMYAN M, REHMANI M I A. Spatial autocorrelation analysis of extreme precipitation in Iran[J]. Russian Meteorology & Hydrology, 2017, 42(6): 415-424. [18] 刘靖, 单春艳, 梁晓宇. 唐山市基于GIS的PM2.5空间聚集性及分区管控[J]. 中国环境科学, 2020, 40(2): 513-522. [19] ANSELIN L. Local indicators of spatial association-LISA[J]. Geographical Analysis, 1995, 27(2): 93-115. [20] 阳海鸥, 廖玲莉, 冷清明. 江西省城市化与大气颗粒物污染的时空特征及耦合协调关系[J]. 长江流域资源与环境, 2022, 31(4): 890-902. [21] ANSELIN L, Smirnov O. Efficient algorithms for constructing proper higher order spatial lag operators[J]. Journal of Regional Science, 1996, 36(1): 67-89. [22] 罗雅红, 龚建周, 简钰清, 等. 粤港澳大湾区SO2平均浓度与制造业、生产性服务业集聚的空间关联特征[J]. 生态经济, 2021, 37(2): 176-182. [23] 陈伟, 徐学哲, 刘文清. 2017—2021年苏皖鲁豫交界区域PM2.5和O3时空变化特征及影响因素[J]. 环境科学, 2024, 45(4):1950-1962. [24] 李霄阳, 李思杰, 刘鹏飞, 等. 2016年中国城市臭氧浓度的时空变化规律[J]. 环境科学学报, 2018, 38(4): 1263-1274. [25] 尹稚祯, 王兴磊. 珠三角城市群臭氧浓度时空变化特征分析[J]. 复旦学报(自然科学版), 2020, 59(6): 748-759. [26] 毛卓成, 许建明, 杨丹丹, 等. 上海地区PM2.5-O3复合污染特征及气象成因分析[J]. 中国环境科学, 2019, 39(7): 2730-2738. [27] 王维思, 王楠, 高玉娟, 等. 2019年郑州冬、春季重污染期间PM2.5污染特征分析[J]. 环境科学学报, 2020, 40(5): 1594-1603. [28] 周明卫, 康平, 汪可可, 等. 2016—2018年中国城市臭氧浓度时空聚集变化规律[J]. 中国环境科学, 2020, 40(5): 1963-1974. [29] 陈志青, 邵天杰, 赵景波, 等. 东北地区臭氧浓度空间格局演变规律及影响因素[J]. 环境科学学报, 2020, 40(9): 3071-3080. [30] 赵旭辉, 董昊, 季冕, 等. 合肥市O3污染时空变化特征及影响因素分析[J]. 环境科学学报, 2018, 38(2): 649-660. [31] 荆琦, 盛立芳, 张玮航, 等. 20018—2021年京津冀及周边地区"2+26"城市PM2.5与O3污染特征及气象影响[J]. 环境科学研究, 2023, 36(5): 875-886. [32] 张艺凡, 侯雪伟, 陈军, 等. 淮安市洪泽区细颗粒物及臭氧污染特征[J]. 环境化学, 2022, 41(8): 2561-2572. [33] 赖安琪, 陈晓阳, 刘一鸣, 等. 珠江三角洲高质量浓度 PM2.5和O3复合污染特征[J].中山大学学报(自然科学版), 2018, 57(4): 30-36. [34] CHEN J J, SHEN H F, LI T W, et al. Temporal and spatial features of the correlation between PM2.5 and O3 concentrations in China[J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4824-4841. [35] 郭欣瞳, 宋宏权, 梁留科, 等. 2015—2017年中国臭氧浓度时空变化特征[J]. 气象与环境科学, 2020, 43(3): 41-50. [36] 李红丽, 王杨君, 黄凌, 等. 中国典型城市臭氧与二次气溶胶的协同增长作用分析[J]. 环境科学学报, 2020, 40(12): 4368-4379. [37] 张淼, 丁椿, 孟赫, 等. 山东省环境空气中PM2.5与O3的复合污染特征与时空变化趋势[J]. 环境科学研究, 2023, 36(2): 246-259. [38] 孙金金, 黄琳, 龚康佳, 等. 2014—2019年北京和南京地区PM2.5和臭氧质量浓度相关性研究[J]. 南京信息工程大学学报(自然科学版), 2020, 12(6): 656-664. [39] LI K, JACOB D J, LIAO H, et al. A two-pollutant strategy for improving ozone and particulate air quality in China[J]. Nature Geoscience, 2019, 12: 906-910. [40] WANG Y H, GAO W K, WANG S, et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017[J]. National Science Review, 2020, 7: 1331-1339. [41] 齐冰, 牛彧文, 杜荣光, 等. 杭州市近地面大气臭氧浓度变化特征分析[J]. 中国环境科学, 2017, 37(2): 443-451. [42] 李松, 罗绪强, 李恋, 等. 基于GIS的中国PM2.5浓度的空间分布及影响因素分析[J]. 水土保持通报, 2015(4): 202-205.
点击查看大图
计量
- 文章访问数: 26
- HTML全文浏览量: 4
- PDF下载量: 3
- 被引次数: 0