EFFECT OF MICROBIAL MODIFICATION ON STEEL SLAG ON ITS STABILITY AND ITS APPLICATION IN ROAD ENGINEERING
-
摘要: 为快速高效解决钢渣安定性问题,研究了巴氏芽孢杆菌微生物改性钢渣安定性用的材料因素(微生物浓度、尿素浓度)和处置方法(处置时间、处置温度)对钢渣安定性和抗压强度的影响,并通过X射线衍射分析仪、扫描电子显微镜等手段分析不同因素对微生物改性钢渣性能影响效果机制。在此基础上,将改性合格的钢渣应用于道路基层,测定其试件的7 d无侧限抗压强度和浸水膨胀率。研究结果表明:1)利用巴氏芽孢杆菌微生物可以有效的改善钢渣的体积安定性。当微生物掺量为钢渣质量的60%,尿素浓度2 mol/L,处置温度(20±2)℃,处置时间72 h时,微生物对钢渣中安定性处置效果最好,此时钢渣中游离氧化钙(f-CaO)含量为2.98%,符合YB/T 4184—2018《钢渣集料混合料路面基层施工技术规范》要求。2)利用改性钢渣制备道路基层材料,当水泥掺量为6%时,高速和一级公路基底层、二级及二级以下的公路基底层,和二级及以下公路基层的7 d无侧限抗压强度分别为4.1 MPa、4.6 MPa、5.1 MPa,与未改性前相比分别提升了20.6%、9.5%、8.5%,浸水膨胀率分别是1.77%、1.84%、1.92%,均符合YB/T 4184—2018中浸水膨胀率<2%的要求。Abstract: In order to quickly and efficiently solve the stability problem of steel slag, this paper studied the effects of material factors (microbial concentration, urea concentration) and treatment methods (treatment time, treatment temperature) on the stability and compressive strength of steel slag modified by Bacillus Pasteuris. The impact of the above factors on the properties of microbe-modified steel slag was analyzed using X-ray diffraction analyzer, scanning electron microscope, and other testing methods. On this basis, the modified steel slag was applied to the road base, and the 7-day unconfined compressive strength and water-soaked expansion rate of the specimen were studied. The results showed that: 1) the volume stability of steel slag could be effectively improved by using Bacillus pasteuris. When the microbial content was 60% of the mass of steel slag, the urea concentration was 2 mol/L, the treatment temperature was (20±2) ℃, and the treatment time was 72 h, the treatment effect of microbial on steel slag was the best, and the content of f-CaO in steel slag was 2.98%, which met the requirements of the code. 2) using modified steel slag to prepare road base material, when the cement content was 6%, the 7-day unconfined compressive strength of the base course of Expressway and class Ⅰ highway, the base course of class Ⅱ and below highways, and the base-bottom course of class Ⅱ and below highways are 4.1 MPa, 4.6 MPa and 5.1 MPa, respectively. Compared with the specimens before modification, they were increased by 20.6%, 9.5%, and 8.5%, respectively. The water-soaked expansion rates were 1.77%, 1.84%, and 1.92%, respectively, which all met the requirements in the code of less than 2%.
-
Key words:
- steel slag /
- microorganisms /
- stability /
- compressive strength /
- soaking expansion rate
-
[1] GUO J, BAO Y, WANG M. Steel slag in China: treatment, recycling, and management[J]. Waste Management, 2018, 78: 318-330. [2] 张邦胜, 王芳, 刘昱辰, 等. 碳中和背景下钢渣固碳工艺研究[J]. 中国资源综合利用, 2022, 40(6): 112-115, 120. [3] 姚星亮, 廖洪强, 宋慧平, 等.钢渣超微粉理化特性[J].钢铁研究学报, 2017, 29(3):195-200. [4] 王星磊, 李冰, 唐彪. 浅谈钢渣的综合利用[J]. 建材与装饰, 2018(12): 120-121. [5] 王淑娟. 钢渣的利用现状及发展趋势分析[J]. 黑龙江科学, 2019, 10(2): 160-161. [6] 刘长波, 彭犇, 夏春, 等. 钢渣利用及稳定化技术研究进展[J]. 矿产保护与利用, 2018(6): 145-150. [7] 李婷. 用钢渣作骨料制备透水混凝土的试验研究[D]. 西安:西安建筑科技大学, 2015. [8] 吴盛华. 水泥稳定钢渣_碎石路面基层材料试验研究[D]. 长沙:湖南大学, 2011. [9] LIU Z, ZONG Y, FENG H, et al. Influence of ferrum on crystallization and microstructure of steel slag-based glass-ceramics[J]. Transactions of the Indian Ceramic Society, 2015, 74(1): 29-34. [10] 丁亮. 碳化养护钢渣制备渗水路面砖[D]. 济南:济南大学, 2010. [11] 王有龙, 胡治春, 金焰, 等. 宝钢滚筒型渣处理装置用钢球磨损分析[J]. 钢铁研究, 2012, 40(2): 50-55. [12] 白大兴. 钢渣处理新方法一盘泼快速冷却法[J]. 河北冶金, 1985, 41(3). [13] 钱强. 新型热闷钢渣综合利用分析[J]. 鞍钢技术, 2019(2): 7-9. [14] 孙明明. 冶金钢渣风淬回收工艺排风系统的研究[D]. 上海: 东华大学, 2010. [15] 刘钰天. 液态钢渣水淬工艺含尘气体净化技术的研究[D]. 上海: 东华大学, 2011. [16] 王会刚, 吴龙, 彭犇, 等. 中外钢渣一次处理技术特点及进展[J]. 科学技术与工程, 2020, 20(13): 5025-5031. [17] PROVIS J L, PALOMO A, SHI C. Advances in understanding alkali-activated materials[J]. Cement and Concrete Research, 2015, 78: 110-125. [18] TEIR S, ELONEVA S, FOGELHOLM C, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007, 32(4): 528-539. [19] 王会刚, 彭犇, 岳昌盛, 等. 钢渣改性研究进展及展望[J]. 环境工程, 2020, 38(5): 133-137. [20] 杜君, 刘家祥, 李敏. 乙二醇-EDTA滴定法与热解重量-示差热分析法相结合测定钢渣中游离氧化钙含量[J]. 理化检验-化学分册, 2013, 49(8): 961-964. [21] 王凯. 理化环境参数对微生物诱导碳酸钙特性的影响[D]. 南京:东南大学, 2018. [22] JIN P, WANG R, SU Y, et al. Study on carbonation process of β-C2S under microbial enzymatic action[J]. Construction and Building Materials, 2019, 228: 110-117.
点击查看大图
计量
- 文章访问数: 21
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0