A LIFE CYCLE ASSESSMENT OF SECONDARY COPPER PRODUCTION
-
摘要: 为促进再生铜行业健康可持续发展,以进口再生铜原料以及国内废铜为原料制备的再生铜为研究对象,采用ReCiPe 2016中间点和终点方法进行生命周期评价,并对生产过程中造成环境影响的主要因素进行分析。结果表明:与国内废铜再生相比,进口再生铜原料资源化生产的环境影响相对较小。各环境影响类别中,人类致癌毒性是进口再生铜原料资源化以及国内废铜再生过程中最为显著的环境影响。能源、运输和生产排放是进口再生铜原料资源化对人类健康的影响前3大贡献者,分别占比46.7%、37.4%和14.2%。国内废铜再生过程中,能源、生产排放和辅料对人类健康的影响贡献较高,分别占比37.9%、31.1%和27.1%。基于上述分析并结合我国实际,提出了减轻再生铜生产过程环境影响的建议。Abstract: To promote the healthy and sustainable development of the recycled copper industry, the imported recycled copper raw materials as well as the recycled copper prepared from China’s domestic copper scrap as raw materials, were taken as the research objects, and the ReCiPe 2016 mid-point and end-point methods were used to carry out the life cycle assessment and analyze the main factors causing environmental impacts in the production process. The results show that the environmental impact of the imported recycled copper raw material resource production is relatively smaller compared with the domestic copper scrap recycling. Among the environmental impact categories, human carcinogenicity toxicity is the most significant environmental impact in the process of the imported recycled copper raw materials and domestic copper scrap recycling. Energy, transportation, and production emissions are the top three contributors to the human health impacts of imported recycled copper feedstock resourcing, accounting for 46.7%, 37.4%, and 14.2%, respectively. In the process of domestic copper scrap regeneration, energy, production emissions, and auxiliary materials contribute more to the impact on human health, accounting for 37.9%, 31.1%, and 27.1%, respectively. Based on the above analysis and combined with China’s actual situation, suggestions are put forward to mitigate the environmental impact of the recycled copper production process.
-
[1] LI L, KIM S A, HEO J E, et al. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis[J]. Journal of Biotechnology, 2017, 264: 1-7. [2] POTHEN F, TOVAR REAÑOS M A. The distribution of material footprints in Germany[J]. Ecological Economics, 2018, 153: 237-251. [3] ZHANG J M, TIAN X, CHEN W, et al. Measuring environmental impacts from primary and secondary copper production under the upgraded technologies in key Chinese enterprises[J]. Environmental Impact Assessment Review, 2022, 96:106855. [4] WANG M X, CHEN W, ZHOU Y, et al. Assessment of potential copper scrap in China and policy recommendation[J]. Resources Policy, 2017, 52: 235-244. [5] ZENG X L, ALI S H, TIAN J P, et al. Mapping anthropogenic mineral generation in China and its implications for a circular economy[J]. Nature Communications, 2020, 11(1): 1544. [6] TIAN X, ZHENG J X, HU L, et al. Impact of China's waste import policy on the scrap copper recovery pattern and environmental benefits[J]. Waste Management, 2021, 135: 287-297. [7] EHELIYAGODA D, WEI F, SHAN G J, et al. Examining the temporal demand and sustainability of copper in China[J]. Environmental Science & Technology, 2019, 53(23): 13812-13821. [8] HUNT R G, FRANKLIN W E, HUNT R G. LCA—How it came about[J]. The International Journal of Life Cycle Assessment, 1996, 1(1): 4-7. [9] MENDEZ L, FORNIES E, GARRAIN D, et al. Upgraded metallurgical grade silicon and polysilicon for solar electricity production: a comparative life cycle assessment[J]. Science of the Total Environment, 2021, 789: 147969. [10] 申宸昊, 邓义祥, 张嘉戌, 等. 我国塑料污染生命周期管理分析与建议[J].环境科学研究, 2021, 34(8): 2026-2034. [11] 李英顺, 路迈西, 胡华龙, 等. 生命周期评价在铜渣回收工艺中的应用前景[J].环境工程, 2009, 27(1): 81-84. [12] 姜金龙, 徐金城, 吴玉萍. 再生铜的生命周期评价[J].兰州理工大学学报, 2006, 32(3): 4-6. [13] 樊欢欢, 王洪涛, 谢阿弟, 等. 精炼铜行业的生命周期节能减排目标评价[J].生态毒理学报, 2014, 9(4): 737-743. [14] HONG J L, CHEN Y L, LIU J, et al. Life cycle assessment of copper production: a case study in China[J]. The International Journal of Life Cycle Assessment, 2017, 23(9): 1814-1824. [15] CHEN J L, WANG Z H, WU Y F, et al. Environmental benefits of secondary copper from primary copper based on life cycle assessment in China[J]. Resources, Conservation and Recycling, 2019, 146: 35-44. [16] FINKBEINER M, INABA A, TAN R, et al. The new international standards for life cycle assessment: ISO 14040 and ISO 14044[J]. The International Journal of Life Cycle Assessment, 2006, 11(2): 80-85. [17] FRISCHKNECHT R, REBITZER G. The ecoinvent database system: a comprehensive web-based LCA database[J]. Journal of Cleaner Production, 2005, 13(13/14): 1337-1343. [18] HAFEZ H, KURDA R, CHEUNG W M, et al. Comparative life cycle assessment between imported and recovered fly ash for blended cement concrete in the UK[J]. Journal of Cleaner Production, 2020, 244:118722. [19] 张勇, 赵冬伟, 舒波.再生铜产业发展现状及发展机遇[J].云南科技管理, 2023, 36(2):1-5. [20] 丁宁, 高峰, 王志宏, 等. 原铝与再生铝生产的能耗和温室气体排放对比[J]. 中国有色金属学报, 2012, 22(10): 2908-2915. [21] 付凌晖, 刘爱华. 中国统计年鉴 16 运输、邮电和软件业 16-11 货物运输平均运距[M]. 北京:中国统计出版社, 2022, 519. [22] 樊欢欢, 王洪涛, 谢阿弟, 等.精炼铜行业的生命周期节能减排目标评价[J].生态毒理学报, 2014, 9(4):737-743. [23] KULCZYCKA J, LELEK Ł, LEWANDOWSKA A, et al. Environmental impacts of energy-efficient pyrometallurgical copper smelting technologies: the consequences of technological changes from 2010 to 2050[J]. Journal of Industrial Ecology, 2016, 20(2): 304-316. [24] SONG X, YANG J, BIN L U, et al.Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective[J].Frontiers of Environmental Science & Engineering, 2014, 8(4):580-588. [25] 顾一帆, 杨弘扬, 吴玉锋, 等.中国铜产业体系演化的碳中和实现机制研究[J].中国环境管理, 2023, 15(4):61-71. [26] 拜冰阳, 李艳萍, 张昕, 等. 再生铜行业环境管理问题的若干思考和建议[J].中国环境管理, 2019, 11(1): 101-105. [27] 扈学文, 赵若楠, 拜冰阳, 等. 我国再生铜冶炼行业现状、技术发展趋势及污染预防对策[J].矿冶, 2016, 25(6): 82-86. [28] SONG Y, ZHANG Y, ZHANG Y J. Economic and environmental influences of resource tax: firm-level evidence from China[J].Resources Policy, 2022, 77.DOI: 10.1016/J.RESOURPOL.2022.102751. [29] SARKAR B, KAR S, BASU K, et al. A sustainable managerial decision-making problem for a substitutable product in a dual-channel under carbon tax policy[J]. Computers & Industrial Engineering, 2022, 172:108635. [30] HAN Y, TAN S, ZHU C, et al. Research on the emission reduction effects of carbon trading mechanism on power industry: plant-level evidence from China[J]. International Journal of Climate Change Strategies and Management, 2022, 15(2): 212-231.
点击查看大图
计量
- 文章访问数: 19
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0