TEMPORAL AND SPATIAL VARIATION CHARACTERISTICS AND DRIVING FACTORS OF SURFACE WATER QUALITY IN HUNAN PROVINCE, CHINA
-
摘要: 开展区域水质监测与成因分析是实施水污染治理的重要前提。基于2021—2022年湖南省的547个监测断面的地表水水质指标数据,依据GB 3838—2002《地表水环境质量标准》,分析湖南省地表水水质时间变化规律与区域性差异,采用主成分分析法识别主要污染指标,运用灰色关联度法探究驱动水质异质化的主要因子。主要研究结果表明:2021—2022年湖南省水质整体良好,每月Ⅰ—Ⅱ类水断面比例不低于70%。湖南省地表水水质的月际变化特征表现为夏季劣于其他季节。与2021年相比,2022年水质状况有所提升。高锰酸盐指数、氨氮、总磷和溶解氧为湖南省主要污染指标。各驱动因子中,工业取水总量、城镇污水排放量、地区生产总值和城镇人口与水质指标的灰色关联度均值>0.8,是驱动不同城市地表水水质异质化的关键性因子,且与工业型城市的水环境质量关联紧密。Abstract: Regional water quality monitoring and cause analysis are important prerequisites for controlling water pollution. Based on the surface water quality data of 547 monitoring sections in Hunan Province from 2021 to 2022, and the GB 3838—2002 Surface Water Environmental Quality Standard, the temporal variation patterns and regional differences in surface water quality in Hunan Province were analyzed. The principal component analysis method was used to identify the main pollution indicators, and the grey relational analysis method was applied to explore the main factors driving the heterogeneity of water quality. The results showed that from 2021 to 2022, the overall surface water quality in Hunan Province was good, with the proportion of Class I to II sections not less than 70% each month. The monthly variation characteristics of surface water quality in Hunan Province showed that the quality in summer was inferior to other seasons. Compared with 2021, the water quality improved in 2022. The main pollution indicators in Hunan Province are the permanganate index, ammonia nitrogen, total phosphorus, and dissolved oxygen. Among the various driving factors, the total industrial water intake, urban sewage discharge, gross regional product, and urban population had an average grey relational grade greater than 0.8 with water quality indicators, which are key factors driving the heterogeneity of surface water quality in different cities and closely related to the water environmental quality of industrial cities.
-
[1] 喻笑勇, 张利平, 陈心池, 等. 湖北省水资源与社会经济耦合协调发展分析[J]. 长江流域资源与环境, 2018,27(4):809-817. [2] 焦军霞,石锦,周脚根,等.城市圈层和水体管理措施对小水体无机氮含量空间分布格局的影响:以湖南省长沙市为例[J/OL].环境工程,1-11[2024-08-01].http://kns.cnki.net/kcms/detail/11.2097.X.20240409.1607.005.html. [3] 徐闯, 刘广州, 陈晓宏. 珠江流域东江(东莞段)溶解氧时空变化及其影响因素[J]. 湖泊科学, 2022,34(5):1540-1549. [4] 吴庭雯, 袁磊, 韩双宝, 等. 安固里淖流域地下水水化学特征与水质评价[J]. 环境科学与技术, 2020,43(3):198-205. [5] 高梦茜. 蒲河流域水环境质量时空变化特征及评价[D]. 沈阳:辽宁大学, 2023. [6] 杨芳, 杨盼, 卢路, 等. 基于主成分分析法的洞庭湖水质评价[J]. 人民长江, 2019,50(增刊2):42-45. [7] 关兴中, 刘昭, 姚成慧, 等. 鄱阳湖典型流域水质综合评价及时空变化分析[J]. 人民长江, 2023,54(增刊1):29-34. [8] 丁瑶, 石清, 杨舒茗, 等. 特大城市河流水环境质量时空变化特征及污染源分析:以成都市为例[J]. 四川环境, 2024,43(1):32-41. [9] 朱天源, 赵海霞, 范金鼎, 等. 滇池流域河湖水环境时空分异及其影响因素[J]. 长江流域资源与环境, 2023,32(6):1305-1316. [10] 彭甲超, 肖建忠, 李纲, 等. 长江经济带农业废水面源污染与农业经济增长的脱钩关系[J]. 中国环境科学, 2020,40(6):2770-2784. [11] 曹艳敏, 安宏雷, 韩帅. 湘江流域水环境评价模型及驱动因子识别[J]. 长江科学院院报, 2023,40(10):51-58. [12] 刘诚. 不同评价方法在阿克苏市地下水水质评价中的应用分析[J]. 节水灌溉, 2019(4):66-71. [13] 李晓玉, 韩愫, 邵光艺, 等. 基于多元分析的北京市通州区主要河流水质时空变化[J]. 环境化学, 2022,41(9):2896-2907. [14] 解鑫, 尤佳艺, 李文攀, 等. 2011—2021年全国地表水环境质量评价与变化分析[J]. 中国环境监测, 2023,39(4):23-32. [15] 马丁, 李硕. 中国地表水水质变化趋势及治理政策应对[J]. 中国人口·资源与环境, 2023,33(5):27-39. [16] 嵇晓燕, 侯欢欢, 王姗姗, 等. 近年全国地表水水质变化特征[J]. 环境科学, 2022,43(10):4419-4429. [17] 黄彬彬, 严登华, 李卿鹏. 赣江尾闾河段水环境演变规律与驱动因子分析[J]. 人民长江, 2019,50(增刊2):26-29. [18] 王昱璋, 董增川, 崔璨, 等. 水足迹视角下的湖南省水资源利用评价[J]. 西安:西安理工大学学报, 2023. [19] 中华人民共和国水利部. 中国水资源公报2022[R]. 北京, 2023. [20] 徐业平. 河流水质水量综合评价方法研究综述[J]. 水资源保护, 2005(4):34-36. [21] 湖南省统计局. 湖南统计年鉴(2021)[M]. 长沙: 中国统计出版社, 2023. [22] XU S, CUI Y, YANG C, et al. The fuzzy comprehensive evaluation (FCE) and the principal component analysis (PCA) model simulation and its applications in water quality assessment of Nansi Lake Basin, China[J]. Environmental Engineering Research, 2021,26(2):200022. [23] FATIMA S U, KHAN M A, SIDDIQUI F, et al. Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan)[J]. Environmental Monitoring and Assessment, 2022,194(3):1-22. [24] RAVISH S, SETIA B, DESWAL S. Groundwater quality analysis of Northeastern Haryana using multivariate statistical techniques[J]. Journal of the Geological Society of India, 2020,95(4):407-416. [25] 田福金, 马青山, 张明, 等. 基于主成分分析和熵权法的新安江流域水质评价[J]. 中国地质, 2023,50(2):495-505. [26] 杨永宇, 李斌, 白维东, 等. 宁夏腾格里湖水环境因子时空异质性及水环境质量评价[J]. 环境工程, 2016,34(增刊1):860-863. [27] KHAN M, ELLAHI A, NIAZ R, et al. Water quality assessment of alpine glacial blue water lakes and glacial-fed rivers[J]. Geomatics Natural Hazards & Risk, 2022,13(1):2597-2617. [28] 安堃达, 程继雄, 嵇晓燕, 等. 湖北省地表水水质评价指标及监测方式研究[J]. 中国环境监测, 2021,37(2):142-147. [29] 曹艳敏, 毛德华, 吴昊, 等. 湘江干流水环境质量演变特征及其关键因素定量识别[J]. 长江流域资源与环境, 2019,28(5):1235-1243. [30] 黄紫旖, 姜三元, 高海鹰, 等. 鄱阳湖丘陵流域水质时空变化及影响因素[J]. 环境科学与技术, 2022,45(3):47-57. [31] 汪心雯, 刘子琦, 郭琼琼, 等. 贵州黄洲河流域水质时空分布特征及污染源解析[J]. 环境工程, 2021,39(9):69-75. [32] 罗平平, 武阳, 王双涛, 等. 沣河流域水质的时空对比分析[J]. 水资源与水工程学报, 2021,32(5):35-41. [33] 马小雪, 龚畅, 王丽, 等. 不同水期秦淮河流域水污染的分布特征及来源解析[J]. 长江流域资源与环境, 2021,30(12):2949-2961. [34] ZENG Y, ZHOU Y, CAO W, et al. Big data analysis of water quality monitoring results from the Xiang River and an impact analysis of pollution management policies[J]. Mathematical Biosciences and Engineering, 2023,20(5):9443-9469. [35] 罗文斌, 楚雪莲. 旅游产业发展与土地利用结构耦合协调演化研究:以国际旅游城市张家界为例[J]. 陕西师范大学学报(自然科学版), 2023,51(2):36-46. [36] 代孟均, 张兵, 杜倩倩, 等. 不同缓冲区的土地利用方式对地表水水质的影响:以海河流域天津段为例[J]. 环境科学, 2024,45(3):1512-1524. [37] 谢亚军, 赵毅, 张清玲, 等. 湘江保护治理对水质的影响及原因分析[J]. 农业现代化研究, 2023,44(1):173-183. [38] 章晓. 资江干流污染现状分析与防治对策[D]. 长沙:湖南农业大学, 2020. [39] 傅晓华, 阳文林, 傅泽鼎, 等. 基于PSR模型的洞庭湖区水环境治理绩效评价[J]. 生态经济, 2022,38(8):168-175. [40] 李莹杰, 王丽婧, 李虹, 等. 不同水期洞庭湖水体中磷分布特征及影响因素[J]. 环境科学, 2019,40(5):2170-2177.
点击查看大图
计量
- 文章访问数: 30
- HTML全文浏览量: 5
- PDF下载量: 4
- 被引次数: 0