ADSORPTION PERFORMANCE OF 2,4-DICHLOROPHENOL ON MICROPOROUS-RICH BIOCHAR
-
摘要: 以废弃的杉木屑为原材料,制备出富微孔的生物质炭(简称FWB),以2,4-二氯苯酚(2,4-DCP)为目标污染物,研究了不同吸附条件对FWB吸附2,4-DCP的影响,并利用动力学模型(准一级动力学、准二级动力学和颗粒内扩散模型)、等温吸附模型(Langmuir、Freundlich和Temkin模型)和吸附热力学模型(Van’t Hoff模型)对吸附过程进行拟合,分析其吸附特性;结合SEM-EDS、BET、FTIR、XRD和XPS表征方法分析FWB的基本特性和吸附机理。结果表明:吸附过程符合准二级动力学模型和Freundlich模型,即FWB对2,4-DCP的吸附是以多分子层的化学吸附为主,最大吸附容量为138.05 mg/g,吸附过程为自发的吸热过程;该生物炭拥有较高的比表面积(326.770 m2/g),平均孔径为1.960 nm,总孔容为0.219 mL/g,微孔孔容(0.178 mL/g)占总孔容的81.279%。Abstract: In this paper, microporous-rich biomass charcoal (referred to as FWB) was prepared using waste fir wood chips as the raw material, and 2,4-dichlorophenol (2,4-DCP) was used as the target pollutant. The effects of different adsorption conditions on the adsorption performance of 2,4-DCP by FWB were studied, and the kinetic models (quasi-primary kinetics, quasi-secondary kinetics and intraparticle diffusion models), isothermal adsorption models (Langmuir, Freundlich and Temkin models) and the adsorption thermodynamic model (Van’t Hoff model) were used to fit the adsorption process and analyze its adsorption characteristics. The basic characteristics and adsorption mechanism of FWB were analyzed by SEM-EDS, BET, FTIR, XRD and XPS. The results showed that the adsorption process followed the quasi-secondary kinetic model and the Freundlich model, i.e. the adsorption of 2,4-DCP by FWB was based on the chemisorption of multilayers, with a maximum adsorption capacity of 138.05 mg/g. The adsorption process was a spontaneous heat absorption process. The biochar possesses a high specific surface area (326.770 m2/g), and an average pore size of 1.960. The total pore volume is 0.219 mL/g, and the micro-pore volume (0.178 mL/g) accounts for 81.279% of the total pore volume.
-
[1] CAO W M, ZENG C J, GUO X F, et al. Enhanced electrochemical degradation of 2,4-dichlorophenol with the assist of hydrochar[J]. Chemosphere, 2020, 260: 127643. [2] 傅德黔, 孙宗光, 章安安, 等. 我国水环境优先监测的现状与发展趋势[J]. 中国环境监测, 1996, 12(3): 1-3. [3] XIA X C, HUA C X, XUE S P, et al. Response of selenium-dependent glutathione peroxidase in the freshwater bivalve Anodonta woodiana exposed to 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol[J]. Fish Shellfish Immunol, 2016, 55: 499-509. [4] 胡梦杰, 钟磊, 蔡晓鲜, 等. 微生物降解石油烃的代谢机制及研究进展[J]. 环境工程, 2023, 41(2): 234-246. [5] 孙素云, 李宝磊, 孔德勇, 等. 氯代吡啶类污染物吸附与转化技术研究进展及挑战[J]. 环境工程, 2022, 40(5): 227-236. [6] HE P Y, ZHANG F Y, ZHANG Y J, et al. Multifunctional fly ash-based GO/geopolymer composite membrane for efficient oil-water separation and dye degradation[J]. Ceramics International, 2023, 42(2): 1855-1864. [7] QU Y, QIN L, YANG Y Z, et al. ZIF-8-derived N-doped hierarchical porous carbon coated with imprinted polymer as magnetic absorbent for phenol selective removal from wastewater[J]. Journal of Colloid and Interface Science, 2023, 630: 573-585. [8] 杜明辉, 毕莹莹, 董莉, 等. 活性炭粒径对O3-AC处理有机废水的影响机制[J]. 环境工程, 2022, 40(4): 22-28. [9] 陈启杰, 梁春艳, 赵雅兰, 等. 淀粉纳米晶接枝聚乙烯亚胺对阴离子染料的吸附[J]. 环境工程, 2023, 41(3): 57-64. [10] HUANG Q, SONG S, CHEN Z, et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review[J]. Biochar, 2019, 1(1): 45-73. [11] 刘雪平, 闫晓乐, 张焕, 等. 氯化铁改性椰壳活性炭去除2,4-二氯苯酚的吸附性能研究[J]. 化学试剂, 2022, 44(6): 835-840. [12] HU B W, AI Y J, JIN J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials[J]. Biochar, 2020, 2(1): 47-64. [13] 刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能研究[J]. 中国环境科学, 2022, 42(1): 1-8. [14] 王宇航, 俞伟, 赵思钰, 等. 改性生物炭对水环境中抗生素类药物的吸附研究进展[J]. 环境工程, 2021, 39(12): 91-99,134. [15] ALSOHAIMI I H, AASSAR M R,ELZAIN A A, et al. Development of activated carbon-impregnated alginate * β-cyclodextrin/gelatin beads for highly performance sorption of 2,4-dichlorophenol from wastewater[J]. Journal of Materials Research and Technology, 2020, 9(3): 5144-5153. [16] 林旭萌, 宿程远, 黄纯萍, 等. 污泥质生物炭对2,4-二氯苯酚的吸附性能[J]. 环境工程, 2019, 37(8): 154-158. [17] 李尚真, 张治宏, 易晓辉, 等. 改性猪粪制生物炭活化过硫酸盐(PS)去除罗丹明B[J]. 环境化学, 2022, 41(3): 1-11. [18] 孙兆楠, 潘玉瑾, 冷杰雯, 等. 活性黑KN-B在石墨烯表面的吸附行为[J]. 环境工程, 2021, 39(12): 114-119. [19] 程文远, 李法云, 吕建华, 等. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. [20] 闫宇. 不同原料生物炭材料对雌激素的吸附[D]. 天津: 天津师范大学, 2022. [21] LIU W T, RUI D J, WANG Z B, et al. Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB[J]. Environmental Technology, 2021, 42(24): 3797-3806. [22] 李莹. 杉木生物质炭特性及其对土壤碳稳定性影响的研究[D]. 福州: 福建农林大学, 2018. [23] WANG Z, REN D, WU J, et al. Study on adsorption-degradation of 2,4-dichlorophenol by modified biochar immobilized laccase[J]. International Journal of Environmental Science and Technology, 2021, 19(3): 1393-1406. [24] LIU Y Y, MA S Q, CHEN J W. A novel pyro-hydrochar via sequential carbonization of biomass waste: preparation, characterization and adsorption capacity[J]. Cleaner Product, 2018, 176: 187-195. [25] GONG Y X, CHEN Z L, BI L B, et al. Adsorption property and mechanism of polyacrylate-divinylbenzene microspheres for removal of trace organic micropollutants from water[J]. Science of the Total Environmental, 2021, 781: 146635. [26] ENSIYEH T, ALI F, EDER C L, et al. High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution[J]. Chemosphere, 2020, 295: 133850. [27] RUPREKHA S, RITUSMITA G, NEONJYOTI B, et al. Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: optimization through response surface methodology[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5528-5539. [28] PAOLA T H, DISON S P F, JORDANA G, et al. Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107408. [29] 程钰莹, 王嘉铭, 王平, 等. 不同植物基生物炭对NH4+及Cd(Ⅱ)的吸附特性[J]. 中南林业科技大学学报, 2022, 42(3): 180-192. [30] YIN W J, ZHANG W, ZHAO C C, et al. Evaluation of removal efficiency of Ni(Ⅱ) and 2,4-DCP using in situnitrogen-doped biochar modified with aquatic animal waste[J]. Ocs Omega, 2019, 4(21): 19366-19374. [31] 田宇. 改性生物炭活化过一硫酸盐去除2,4二氯苯酚的效能及机制研究[D]. 长春: 吉林大学, 2022. [32] GAO L, LI Z H, YI W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105602. [33] HU Y, ZHU Y, ZHANG Y, et al. An efficient adsorbent: simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption[J]. Bioresour Technol, 2019, 288: 121511. [34] MODENES AN, BAZARIN G, BORBA CE, et al. Tetracycline adsorption by tilapia fish bone-based biochar: mass transfer assessment and fixed-bed data prediction by hybrid statistical-phenomenological modeling[J]. Journal of Cleaner Production, 2021, 279: 123775. [35] DENG Y X, ZHANG T, NIE H Y, et al. Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system[J]. Science of the Total Environment, 2019, 646: 1140-1154. [36] SHRAMANA R B, PAPITA D, ANIRUDDHA M, et al. Biochar from waste Sterculia foetida and its application as adsorbent for the treatment of PAH compounds: Batch and optimization[J]. Fuel, 2021, 306: 121623. [37] LIY H, PENGL F, LIW X. Adsorption behaviors on trace Pb2+ from water of biochar adsorbents from konjac starch[J]. Adsorption Science & Technology, 2020, 38(9/10): 344-356. [38] MENGZ Y, HOUX F, LIUY H, et al. Facile fabrication of iron-modified biochar as a renewable adsorbent for efficient siloxane (L2) removal[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105799. [39] YAO Y, ZHANG Y, GAO B, et al. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse[J]. Environmental Science Pollution Research, 2018, 25(26): 25659-25667. [40] AMIR H O, MEHRDAD C, BAHAREH L, et al. Biochar obtained from cinnamon and cannabis as effective adsorbents for removal of lead ions from water[J]. Environmental Science and Pollution Research, 2019, 26(27): 27905-27914.
点击查看大图
计量
- 文章访问数: 15
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0