RESEARCH ON INTERCEPTING CAPACITY OF DIFFERENT TYPES OF INTERCEPTING FACILITIES
-
摘要: 截流设施是水污染防治中的关键构筑物。为探究不同截流设施内流体运动情况及截流能力的确定方法,开展了中试试验与计算流体力学模拟。流体运动分析结果表明,过流断面缩小的束窄作用使得截流管内出现不同水流特征,可划分为宽顶堰流阶段、闸孔自由出流阶段、闸孔淹没出流阶段和满管有压力流阶段。堰的阻水和水流转弯使得堰式截流设施在远离截流管一侧出现易淤积点。槽式截流设施受槽的跌水影响,发生水流破碎并大量掺气,增大水损;槽堰式截流设施在堰槽比<1.2时主要受槽的影响,在堰槽比>1.4时堰的影响占据主导地位。结合流体力学与数学分析推导得到了不同型式截流设施截流能力的确定方法。Abstract: The interception facility is a key structure in water pollution control. To investigate the fluid movement and the determination method of interception capacity in different interceptor facilities, pilot test, and computational fluid dynamics simulation were conducted. The results of fluid motion analysis showed that the narrowing effect of the overflow section made different water flow characteristics in the interceptor, which can be divided into wide top weir flow stage, gate hole free flow stage, gate hole flooded flow stage, and full tube with pressure flow stage. The water blocking and flow turning of the weir make the weir-type interceptor prone to siltation at the side away from the interceptor. The slot interceptor was influenced by the falling water of the slot, and the water flow fragmentation and a large amount of gas doping occurred, increasing the water loss; the slot and weir interceptor were mainly influenced by the slot, when the ratio of the weir to the slot was less than 1.2, and the influence of the weir dominated when the ratio was greater than 1.4. In this study, combined with hydrodynamics and mathematical analysis, the determination methods of interception capacity of different types of interceptors are derived.
-
[1] BOTTURI A, OZBAYRAM E G, TONDERA K, et al. Combined sewer overflows: a critical review on best practice and innovative solutions to mitigate impacts on environment and human health[J]. Critical Reviews in Environmental Science and Technology, Taylor & Francis, 2021, 51(15): 1585-1618. [2] 何俊超, 李明明, 刘睿, 等. 国内外合流制溢流污染管控体系研究[J]. 环境工程, 2021, 39(4): 42-49. [3] CEU. JRC. Water Quality in Europe: Effects of the Urban Wastewater Treatment Directive?: a Retrospective and Scenario Analysis of Dir. 91/271/EEC.[M]. LU: Publications Office, 2019. [4] XU Z, XIONG L, LI H, et al. Influences of rainfall variables and antecedent discharge on urban effluent concentrations and loads in wet weather[J]. Water Science and Technology, 2017, 75(7): 1584-1598. [5] CHEBBO G, GROMAIRE M C, AHYERRE M, et al. Production and transport of urban wet weather pollution in combined sewer systems: the "Marais" experimental urban catchment in Paris[J]. Urban Water, 2001, 3(1): 3-15. [6] BARONE L, PILOTTI M, VALERIO G, et al. Analysis of the residual nutrient load from a combined sewer system in a watershed of a deep Italian lake[J]. Journal of Hydrology, 2019, 571: 202-213. [7] 王家卓, 胡应均, 张春洋, 等. 对我国合流制排水系统及其溢流污染控制的思考[J]. 环境保护, 2018, 46(17): 14-19. [8] CHEN S, QIN H, ZHENG Y, et al. Spatial variations of pollutants from sewer interception system overflow[J]. Journal of Environmental Management, 2019, 233: 748-756. [9] 刘家宏, 王开博, 徐多, 等. 高密度老城区海绵城市径流控制研究[J]. 水利水电技术, 2019, 50(11): 9-17. [10] THORNDAHL S, SCHAARUP-JENSEN K, Rasmussen R M. On hydraulic and pollution effects of converting combined sewer catchments to separate sewer catchments[J].Urban Water Journal,2015,12(2):120-130. [11] MATÉ MARÍN A, RIVIōRE N, LIPEME KOUYI G. DSM-flux: a new technology for reliable combined sewer overflow discharge monitoring with low uncertainties[J]. Journal of Environmental Management, 2018, 215: 273-282. [12] FACH S, SITZENFREI R, RAUCH W. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation[J]. Water Science and Technology, 2009, 60(12): 3035-3043. [13] 黄瑞晶, 于磊, 葛俊, 等. 城市副中心合流制管网不同截流形式效果模拟研究[J]. 北京水务, 2021(5): 39-43. [14] 刘威, 仲兆平, 刘瑾, 等. 基于CFD的袋式除尘器流场优化及漏袋模拟[J]. 环境工程, 2022, 40(11): 84-91,142. [15] DUFRESNE M, VAZQUEZ J, TERFOUS A, et al. Three-dimensional flow measurements and CFD modelling in a storm-water tank[C]//International Conference on Sustainable Techniques & Strategies in Urban Water Management,.Lyon, 2007. [16] GRANATA F, MARINIS G D, GARGANO R, et al. Hydraulics of circular drop manholes[J].Journal of Irrigation & Drainage Engineering, 2011, 137(2): 102-111. [17] 柴彤山, 伏雨, 程怀玉, 等. 基于CFD-PBM耦合方法的栅条絮凝池内颗粒聚并行为模拟[J]. 环境工程, 2023, 41(4): 40-48. [18] 赵锐, 杜森, 李敏, 等. 基于CFD的渗滤液输运管道结垢特性的数值模拟[J]. 环境工程, 2023, 41(3): 111-118,128. [19] 王建龙, 秦美娜, 黄涛, 等. 基于CFD的雨水调蓄池颗粒物沉淀特性研究[J]. 环境工程, 2021, 39(12): 44-50. [20] 曹秀芹, 江坤, 徐国庆, 等. 污水截流井的设计优化分析[J]. 给水排水, 2017, 53(12): 20-24. [21] JIANG L, DIAO M, SUN H, et al. Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face[J]. Water, 2018, 10(11): 1663. [22] 马一祎. 排水系统中跌水结构的气体卷吸和能量耗散问题研究[D]. 杭州:浙江大学, 2016. [23] 李燕城, 冯倩云, 马君兰, 等. 城市合流管道污水截流性能研究[J]. 中国给水排水, 1987(5): 23-28,27-32,7. [24] 马君兰, 董树信. 合流管道中雨水溢流井污水截流性能研究[J]. 北京建筑工程学院学报, 1990(2): 72-80.
点击查看大图
计量
- 文章访问数: 15
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0