RESEARCH PROGRESS ON FORMS AND INFLUENCING FACTORS OF NITROGEN AND PHOSPHORUS IN PARTICULATE MATTERS IN URBAN STORMWATER RUNOFF
-
摘要: 颗粒物是径流雨水中氮磷污染物的主要载体,控制占比较大的颗粒物可有效削减污染负荷。颗粒物携带的氮磷容易受到pH、温度、溶解氧、有机质等外部环境因子影响发生转化。首先总结了径流颗粒物中氮磷的来源,对比分析了地表、管道和水体沉积物中氮磷组分变化特征,发现三类沉积物中,总氮由88%~92%的有机氮和8%~12%的无机氮组成;总磷则由5%~20%的有机磷和80%~95%的无机磷组成。其次归纳了颗粒物在不同场景下的粒径分布,以及不同粒径颗粒物上氮磷污染物主要赋存范围变化,其中粒径在11~150 μm区间内的沉积物可贡献雨水径流中20%~50%的颗粒态氮和40%~50%的颗粒态磷。最后分析了颗粒物自身特征(粒径、元素组成、表面形态)、其他环境因子(pH、温度、溶解氧、有机质)和微生物对颗粒物中氮磷赋存的影响,如当水体温度从6.85 ℃升至29.85 ℃时,单位质量颗粒物对磷的吸附率提高了12%。研究归纳了颗粒物中氮磷污染物相关研究中存在的不足,可为城市径流氮磷污染精准调控提供借鉴。Abstract: Particulate matter is the primary carrier of nitrogen and phosphorus in stormwater runoff, and controlling the particulate matter with large nitrogen and phosphorus content can effectively reduce the total pollution load. Particulate-borne nitrogen and phosphorus are susceptible to transformation influenced by external environmental factors such as pH, temperature, dissolved oxygen, organic matter, and so on. This paper firstly summarizes the sources of nitrogen and phosphorus contained in runoff particulate matter, and comparatively analyzes the characteristics of nitrogen and phosphorus components in surface, pipeline, and water sediment. It was found that in the three types of sediments, total nitrogen was composed of 88% to 92% organic nitrogen and 8% to 12% inorganic nitrogen, while total phosphorus was composed of 5% to 20% organic phosphorus and 80% to 95% inorganic phosphorus. Furthermore, it summarizes the particle size distribution of particulate matter in different scenarios, along with the variations in the main ranges of nitrogen and phosphorus pollutants on particles of different sizes. Sediments within the particle size range of 11 to 150 μm contribute 20% to 50% of particulate nitrogen and 40% to 50% of particulate phosphorus in stormwater runoff. An analysis was also conducted on the inherent characteristics of particulate matter (particle size, metal composition, surface morphology), other environmental factors (pH, temperature, dissolved oxygen, organic matter), and the impact of microorganisms on the forms of nitrogen and phosphorus carried by the particulate matter. For example, when water temperature increased from 6.85 ℃ to 29.85 ℃, the adsorption rate of phosphorus by particulate matter increased by 12%. This article summarizes the shortcomings in the relevant studies on nitrogen and phosphorus pollutants in particulate matter, aiming to provide insights for precise control of nitrogen and phosphorus pollution in urban runoff.
-
[1] 房金秀, 谢文霞, 朱玉玺,等. 合流制面源污染传输过程与污染源解析 [J]. 环境科学, 2019, 40(6): 2705-2714. [2] 张青文, 余健, 李天兵.雨水管道沉积物污染初期冲刷效应及初期雨水量研究 [J]. 给水排水, 2020, 46(7): 119-124. [3] MOORE T L, RODAK C M, AHMED F, et al. Urban Stormwater Characterization, Control and Treatment [J]. Water Environment Research, 2018. [4] YANG Y Y, TOOR G S. Stormwater runoff driven phosphorus transport in an urban residential catchment: implications for protecting water quality in urban watersheds [J]. Sci Rep, 2018, 8(1): 11681. [5] ZHANG W, LI J, SUN H, et al. Pollutant first flush identification and its implications for urban runoff pollution control: a roof and road runoff case study in Beijing, China [J]. Water Sci Technol, 2021, 83(11): 2829-2840. [6] 杜曼曼,丁庆玲,王倩,等.宜兴市典型道路灰尘(150 μm)组分中重金属污染特征及风险评价[J].环境化学,2020,39(6):1689-1698. [7] 邰超,张坤峰,周天健,等.丹江口水库库边降雨径流中有机氯农药赋存及风险评价[J].中国环境科学,2012,32(6):1046-1053. [8] HILLIGES R, ENDRES M, TIFFERT A, et al. Characterization of road runoff with regard to seasonal variations, particle size distribution and the correlation of fine particles and pollutants[J]. Water Science and Technology, 2017, 75(5): 1169-1176. [9] WAKIDA F T, MARTINEZ-HUATO S, GARCIA-FLORES E, et al. Pollutant association with suspended solids in stormwater in Tijuana, Mexico[J]. International Journal of Environmental Science and Technology, 2014, 11: 319-326. [10] 赵登良, 徐征和, 边振, 等. 济南市不同下垫面降雨径流水质变化特征分析 [J]. 中国农村水利水电, 2020, (9): 177-81. [11] WANG S, MA Y, ZHANG X, et al. Nitrogen transport and sources in urban stormwater with different rainfall characteristics [J]. Sci Total Environ, 2022: 155902. [12] HOU P, REN Y, ZHANG Q, et al. Nitrogen and Phosphorous in Atmospheric Deposition and Roof Runoff [J]. Polish Journal of Environmental Studies, 2012, 21(6): 1621-1627. [13] WU J S, ALLAN C J, SAUNDERS W L, et al. Characterization and pollutant loading estimation for highway runoff [J]. Journal of environmental engineering, 1998, 124(7): 584-592. [14] 郭心仪,张守红,王国庆.城市不同下垫面降雨径流水质监测及特征研究[J].中国农村水利水电,2024,(3):128-136. [15] 王龙,聂煜东,焦昭杰, 等. 典型山地城市雨水径流污染负荷时空分布[J].重庆工商大学学报(自然科学版), 2023, 40(2):1-6. [16] METCALFE C D, SULTANA T, LI H, et al. Current-use pesticides in urban watersheds and receiving waters of western Lake Ontario measured using polar organic chemical integrative samplers (POCIS) [J]. J Great Lakes Res, 2016, 42(6): 1432-1442. [17] THORPE A, HARRISON R M. Sources and properties of non-exhaust particulate matter from road traffic: a review [J]. Sci Total Environ, 2008, 400(1/2/3): 270-282. [18] XIAO J, WANG B, QIU X L, et al. Interaction between carbon cycling and phytoplankton community succession in hydropower reservoirs: evidence from stable carbon isotope analysis [J]. Sci Total Environ, 2021, 774: 145141. [19] 付博文, 金鹏康, 石山, 等. 西安市污水管网中沉积物特性研究[J]. 中国给水排水, 2018, 34(17): 119-122. [20] 刘子晨. 西安市主城区降雨径流污染源解析及影响因素研究[D].西安:西安理工大学, 2021. [21] 古明哲, 常素云, 许伟, 等. 天津市区雨水径流污染指标分类及污染源解析[J]. 南水北调与水利科技, 2018, 16(5): 85-92,101. [22] 欧阳威, 王玮, 郝芳华, 等. 北京城区不同下垫面降雨径流产污特征分析[J]. 中国环境科学, 2010, 30(9): 1249-1256. [23] 缪丽萍, 张千千. 绿色屋面降雨径流水质源汇特征及污染源解析[J]. 环境科学学报, 2021, 41(,5): 1940-1949. [24] 王力玉, 秦华鹏, 谭小龙, 等. 深圳大气湿沉降对典型屋面径流水质的影响 [J]. 环境科学与技术, 2013, 36(2): 60-64. [25] 侯培强, 任玉芬, 王效科, 等. 北京市城市降雨径流水质评价研究[J]. 环境科学,2012, 33(1): 71-75. [26] 张千千, 王效科, 郝丽岭, 等. 重庆市路面降雨径流特征及污染源解析[J]. 环境科学, 2012, 33(1): 76-82. [27] 王吉苹, 朱木兰. 厦门城市降雨径流氮磷非点源污染负荷分布探讨[J]. 厦门理工学院学报, 2009, 17(2): 57-61. [28] 许立宏. 杭州市校园区典型不同下垫面降雨径流污染特征及污染源分析[D]. 杭州:浙江农林大学, 2021. [29] HUANG J, DU P, AO C, et al. Multivariate analysis for stormwater quality characteristics identification from different urban surface types in macau [J]. Bull Environ Contam Toxicol, 2007, 79(6): 650-654. [30] 祁妍娟, 康爱红, 卢志萍. 扬州市不同类型城市绿地径流污染特性[J]. 科学技术与工程, 2019, 19(35): 382-387. [31] 唐莉华, 何康茂, 梁宁, 等. 北京校园区降雨径流产污特性及其对水环境的影响[J]. 清华大学学报(自然科学版), 2014, 54(8): 1025-1030. [32] 黄金良, 涂振顺, 杜鹏飞, 等. 城市绿地降雨径流污染特征对比研究:以澳门与厦门为例 [J]. 环境科学, 2009, 30(12): 3514-3521. [33] 马英, 马邕文, 万金泉, 等. 东莞不同下垫面降雨径流污染输移规律研究[J]. 中国环境科学, 2011, 31(12): 1983-1990. [34] 许立宏, 王春梅, 蔡成豪, 等. 临安校园不同下垫面径流污染特征及污染源解析 [J]. 浙江农业科学, 2021, 62(11): 2319-2326. [35] GASPERI J, GROMAIRE M C, KAFI M, et al. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems[J]. Water Res, 2010, 44(20): 5875-5886. [36] 李海燕, 徐波平, 徐尚玲, 等. 北京城区雨水管道沉积物污染负荷研究[J]. 环境科学, 2013, 34(3): 919-926. [37] 何琪琳, 张风宝, 杨明义. 渭河陕西段河道沉积物中碳氮磷来源分析及污染评价[J]. 水土保持学报, 2020, 34(2): 50-55. [38] 孔燕, 和树庄, 胡斌, 等. 滇池流域富磷地区暴雨径流中磷素的沉降及输移规律[J]. 环境科学学报, 2012, 32(9): 2160-2166. [39] 李如忠, 周爱佳, 童芳, 等. 合肥城区地表灰尘氮磷形态分布及生物有效性[J]. 环境科学, 2012, 33(4): 1159-1166. [40] 潘伟亮,何强,艾海男,等. 重庆典型区域雨水管道沉积物中氮磷污染特征分析[J]. 环境科学学报,2015,35(1):257-261. [41] HONG Y, WU J, GUAN F, et al. Nitrogen removal in the sediments of the Pearl River Estuary, China: evidence from the distribution and forms of nitrogen in the sediment cores[J]. Marine Pollution Bulletin, 2019, 138: 115-124. [42] WU Y,GAN M,HUANG X,et al. Fractions and mineralization potential of the sediment organic nitrogen in Daya Bay, South China Sea: anthropogenic influence and ecological implications[J]. Mar Pollut Bull,2020, 160: 111594. [43] 王子峤, 李叙勇. 基于核密度估计的城市基础要素与街尘营养元素含量特征关联[J]. 环境科学, 2022, 43(2): 867-877. [44] 李海燕, 梅慧瑞, 王崇臣. 超声波辅助提取雨水管道沉积物中磷的存在形态[J]. 环境科学与技术, 2011, 34(12): 18-21. [45] 谢发之, 罗锟, 朱元荣, 等. 南漪湖沉积物磷的赋存形态及对上覆水的影响研究[J]. 中国环境科学,2022,42(11): 5318-5327. [46] 梁越, 刘小真, 赖劲虎. 湖泊氮的生物地球化学过程及其氮同位素技术的应用 [J]. 湖北农业科学, 2014, 53(10): 2238-2243. [47] LUSK M G, TOOR G S, INGLETT P W. Organic nitrogen in residential stormwater runoff: implications for stormwater management in urban watersheds [J]. Sci Total Environ, 2020, 707: 135962. [48] VALENCIA A, ORDONEZ D, WEN D, et al. The interaction of dissolved organic nitrogen removal and microbial abundance in iron-filings based green environmental media for stormwater treatment [J]. Environ Res, 2020, 188: 109815. [49] WU Y, DITTMAR T, LUDWICHOWSKI K U, et al. Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea [J]. Marine chemistry, 2007, 107(3): 367-377. [50] 廖家豪. 典型喀斯特高原湖泊沉积物溶解性有机氮的来源解析及释放特征[D].贵阳:贵州大学, 2021. [51] HOOD A, CHOPRA M, WANIELISTA M. Assessment of biosorption activated media under roadside swales for the removal of phosphorus from stormwater [J]. Water, 2013, 5(1): 53-66. [52] SOLEIMANIFAR H, DENG Y, WU L, et al. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff [J]. Chemosphere, 2016, 154: 289-292. [53] TOOR G S, OCCHIPINTI M L, YANG Y Y, et al. Managing urban runoff in residential neighborhoods: nitrogen and phosphorus in lawn irrigation driven runoff [J]. Plos One, 2017, 12(6): e0179151. [54] RUTTENBERG K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments [J]. Limnology Oceanography, 1992, 37(7): 1460-1482. [55] RUBAN V, LÓPEZ-SÁNCHEZ J, PARDO P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-a synthesis of recent works [J]. Fresenius' Journal Of Analytical Chemistry, 2001, 370(2): 224-228. [56] 王建龙, 许怀奥, 黄涛, 等. 北京市道路沉积物的粒径分布及其污染特性研究[J]. 科学技术与工程, 2018, 18(3): 9-14. [57] 汪志荣, 刘珊珊, 李洁, 等. 城市不同级别道路尘土的粒径特性分析 [J]. 生态环境学报, 2018, 27(2): 282-289. [58] 叶蓉, 盛铭军, 姜永波, 等. 苏州城区雨水管道沉积物典型污染物分布特征 [J]. 环境科学, 2022, 43(1): 277-284. [59] 王倩. 城市道路地表径流颗粒分布及重金属污染特性研究 [D].西安:西安建筑科技大学, 2019. [60] 武俊良, 任玉芬, 王雪梅, 等. 城市典型屋面径流的排污特征 [J]. 环境工程学报, 2016, 10(8): 4351-4356. [61] 朱伟, 边博, 李磊. 镇江城市径流颗粒粒径分布及其与污染物的关系 [J]. 环境科学学报, 2008, 28(4): 764-771. [62] 谢尚宇, 邱春生, 张昱, 等. 天津某住宅区降雨径流颗粒粒径分布及污染物赋存形态 [J]. 环境科学研究, 2022, 35(2): 566-573. [63] 陈莹, 胡博, 赵剑强. 西安市城市主干道路面径流颗粒物沉降性能及粒径分布研究 [J]. 安全与环境学报, 2011, 11(1): 139-144. [64] 贾朝阳. 雨水管道沉积物控制措施及其效果研究 [D].北京:北京建筑工程学院, 2012. [65] 司韦, 于江华, 解丽媛. 雨水管道沉积物粒径分布与污染特征研究 [J]. 环境科技, 2021, 34(1): 35-40 [66] 邹艾怡. 城市地表-管道系统污染物赋存和迁移特性研究 [D].长沙:湖南大学, 2021. [67] 徐波平. 城市雨水管道沉积物污染负荷及其冲刷规律研究 [D].北京:北京建筑工程学院, 2011. [68] 刘翠云, 张效华, 杨钰婷, 等. 雨水管道沉积物冲刷特性 [J]. 安全与环境学报, 2019, 19(2): 635-642. [69] 田小松, 张洪, 张进忠. 重庆市典型降雨径流中颗粒物粒径与重金属污染输出特征研究 [J]. 环境科学与技术, 2012, 35(11): 6-11,36. [70] 王健, 刘国华, 齐鲁, 等. 城市排水管道沉积物与污水间物质转移转化研究进展 [J]. 中国给水排水, 2021, 37(24): 34-44. [71] 周邦磊, 赵白航, 李军, 等. 以受纳水体水质为目标的基于Mike Urban的初期雨水调蓄池容积确定 [J]. 给水排水, 2021, 57(S1): 482,489. [72] WU X, YU J, QIU H, et al. Pollution and ecological risk assessment of nutrients associated with deposited sediments collected from roof and road surfaces [J]. Environ Sci Pollut R, 2018, 25(9): 8943-8950. [73] 朱旻航, 王学良, 陈玉成. 重庆市主城区街道灰尘中氮、磷污染研究 [J]. 环境化学, 2009, 28(2): 306-307. [74] 李淮, 吴玮, 田永静, 等. 苏州市古城区降雨径流颗粒物粒径分布及污染物赋存形态 [J]. 环境科学, 2016, 37(2): 565-572. [75] WANG Q, ZHANG Q, WU Y, et al. Physicochemical conditions and properties of particles in urban runoff and rivers: implications for runoff pollution [J]. Chemosphere, 2017, 173: 318-325. [76] GIBBONS K J, BRIDGEMAN T B. Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments [J]. Water Res, 2020, 182: 116022. [77] 索鹏程, 王帮国, 陈春伟, 等. 雨水管道沉积物中典型无机氮的干期粒径分布 [J]. 中国环境科学, 2020, 40(12): 5352-5360. [78] 孔繁昕,左晓俊,杨一夫. 颗粒物对渗滤系统去除公路径流重金属的影响 [J]. 城市道桥与防洪, 2022, (1): 181-186. [79] WINSTON R, HUNT W. Characterizing runoff from roads: particle size distributions, nutrients, and gross solids [J]. Journal of Environmental Engineering, 2017, 143(1): 04016074. [80] MA Y, WANG S, ZHANG X, et al. Transport process and source contribution of nitrogen in stormwater runoff from urban catchments[J]. Environmental Pollution, 2021, 289: 117824. [81] 郑可,付浩,李一平. 基于南方城市化粪池前后水质变化特征的若干思考 [J]. 给水排水, 2023, 59 (10): 20-27. [82] 高博, 周怀东, 金洁, 等. 土壤和沉积物中不同形式有机质的表征 [J]. 光谱学与光谱分析, 2013, 33(5): 1194-1197. [83] WANG Y, SHEN Z, NIU J, et al. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions [J]. Journal of Hazardous Materials, 2009, 162(1): 92-98. [84] CUI Z, FANG H, HUANG L, et al. Effect of surface heterogeneity on phosphorus adsorption onto mineral particles: experiments and modeling [J]. Journal of Soils, 2017, 17(12): 2887-2898. [85] 李乾岗,田颖,刘玲等. 水体中沉积物氮和磷的释放机制及其影响因素研究进展 [J]. 湿地科学, 2022, 20 (1): 94-103. [86] 傅子豪. 松华坝重要入库河道沉积物磷素吸附特征及四环素对其影响的研究[D]. 昆明:云南大学, 2021. [87] LEE J Y, BAK G, HAN M. Quality of roof-harvested rainwater--comparison of different roofing materials [J]. Environ Pollut, 2012, 162: 422-429. [88] VIKLANDER M, MARSALEK J, ÖSTERLUND H, et al. An exploratory study of the effects of stormwater pipeline materials on transported stormwater quality [J]. Water Sci Technol, 2017, 76(2): 247-255. [89] NEMETH Z, GÁNCS L, GÁMES G, et al. pH dependence of phosphate sorption on aluminum [J]. Corros Sci, 1998, 40(12): 2023-2027. [90] ANTELO J, AVENA M, FIOL S, et al. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface [J]. J Colloid Interface, 2005, 285(2): 476-486. [91] ÖZACAR M. Adsorption of phosphate from aqueous solution onto alunite [J]. Chemosphere, 2003, 51(4): 321-327. [92] 刘菲菲,王伟平,王万忠,等.不同生态类型沉积物磷释放特征及影响因素研究[J].生态与农村环境学报,2024,40(3):426-436. [93] 张莹莹. 长江口淡—咸水混合过程对营养盐在悬浮物—水之间分配的探讨 [D].上海:华东师范大学, 2007. [94] GARCIA C, HERNANDEZ T, COSTA F, et al. Changes in ATP content, enzyme activity and inorganic nitrogen species during composting of organic wastes [J]. Canadian Journal of Soil Science, 1992, 72(3): 243-253. [95] 刘伟,周斌,王丕波,等. 沉积物再悬浮氮磷释放的机制与影响因素 [J]. 科学技术与工程, 2020, 20 (4): 1311-1318. [96] KANG J,HESTERBERG D,OSMOND L D. Soil organic matter effects on phosphorus sorption: a path analysis[J].Soil Science Society of America Journal,2009,73(2):360-366. [97] 王欣远,潘保柱,王立新等. 内蒙古典型湖泊水环境特征及水质评价 [J]. 环境科学, 2023,(5):1-14 [98] 张晨东, 马秀兰, 安娜, 等. 典型湖库底泥对氮吸附特性的影响 [J]. 水土保持学报, 2014, 28(1): 161-166. [99] GRAVES G A, WAN Y, FIKE D L. Water quality characteristics of storm water from major land uses in South Florida 1 [J]. JAWRA Journal of the SUTHERLAND R American Water Resources Association, 2004, 40(6): 1405-1419. [100] 胡坤. 城市区域内雨水水质评价及其利用研究 [D].哈尔滨:哈尔滨工业大学, 2009. [101] 张茗. 降雨期河道冲淤及亏氧过程研究 [D].成都:西南交通大学, 2021. [102] 冯海艳, 李文霞, 杨忠芳, 等. 上覆水溶解氧水平对苏州城市河道底泥吸附/释放磷影响的研究 [J]. 地学前缘, 2008, (5): 227-234. [103] GOMEZ E, DURILLON C, ROFES G, et al. Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading influence [J]. Water Res, 1999, 33(10). DOI: 10.1016/s0043-1354(98)00468. [104] 杜晓丽, 郑泽东, 陈梦瑶. 不同下垫面雨水径流溶解性有机物特性 [J]. 环境科学学报, 2022, 42(11): 123-130. [105] 陈梦瑶, 杜晓丽, 于振亚, 等. 北京市道路雨水径流溶解性有机物化学组分特性 [J]. 环境科学, 2020, 41(4): 1709-1715. [106] SULIN X, TAOZHE W, CONGYUAN G, et al. Effects of Organic Matter Removal on Nitrogen and Phosphorus ReleaseCharacteristics from Surface Sediments in Urban Shallow Lakes [J]. Bulletin of Soil and Water Conservation, 2021, 41(5): 9-14,74. [107] 许洁, 梁莹, 张振超, 等. 江汉平原地下水中有机质季节变化对氮反应迁移的影响 [J]. 地质科技通报, 2022: 1-14. [108] 张殿伟,李思敏,卞宏辰,等. 人工河流沉积物中磷的分布特征及其形态研究:以肇兰新河为例 [J]. 环境工程学报, 2023, 17 (6): 2015-2026. [109] WANG C, WANG Z, LIN L, et al. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residual [J].Journal of Hazardous Materials, 2012,203, 145-150. [110] WANG S, YI W, YANG S, et al. Effects of light fraction organic matter removal on phosphate adsorption by lake sediments [J]. Appl Geochem, 2011, 26(3): 286-292. [111] 赵忠红. 阳宗海沉积物有机质组成结构及对磷赋存特征的影响 [D].昆明:云南农业大学, 2016. [112] 刘波, 盛明, 唐千, 等. 有机质对城市污染河道沉积物铵态氮吸附-解吸的影响 [J]. 湖泊科学, 2015, 27(1): 50-57. [113] 王圣瑞,赵海超,王娟,等. 有机质对湖泊沉积物不同形态氮释放动力学影响研究 [J]. 环境科学学报, 2012, 32 (2): 332-340. [114] ZHENG M, LI S Q, NI G F, et al. Critical factors facilitating candidatus nitrotoga to be prevalent nitrite-oxidizing bacteria in activated sludge [J]. Environmental Science & Technology, 2020,54(23):15414-15423. [115] 孙晨. 淀中村水域沉积物污染特征及其对微生物群落结构影响研究[D]. 保定:河北大学, 2021. [116] 潘傲,张智,孙磊,等. 种植不同植物的表面流人工湿地净化效果和微生物群落差异分析 [J]. 环境工程学报, 2019,13(8):1918-1929. [117] 王佳梅. RBF 河床沉积物中氮形态转化及其微生物响应特征研究[D]. 长春:吉林大学, 2021. [118] ZHANG S, XIAO R, LIU F, et al. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms[J]. Ecological Engineering, 2016, 97: 363-369. [119] 马骏. 西太平洋海山区"海山效应"对海水生源要素影响的探析[D]. 青岛:中国科学院大学(中国科学院海洋研究所), 2020. [120] XU Z,XU J,YIN H,et al.Urban river pollution control in developing countries[J].Nature Sustainability,2019,2(3):158-160. [121] 高玉珊. 复合垂直流人工湿地对代表性有机磷的净化研究[D]. 长沙:湖南大学, 2020. [122] 尹强. 岱海沉积物中微生物群落结构及功能特征研究[D]. 包头:内蒙古科技大学, 2021.
点击查看大图
计量
- 文章访问数: 19
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0