NH3-SCR PROPERTIES OF CeMn/ZSM-5 CATALYST MODIFIED BY ALKALI-TREATMENT
-
摘要: 氮氧化物NOx作为大气污染物之一,已经造成了严重的环境问题,危及生态环境和人类健康。用氨选择性催化还原(NH3-SCR) NOx已成为脱硝的重要应用技术。区别于传统方式合成的负载型ZSM-5催化剂,采用浸渍后水热的方式一锅法合成Ce、Mn双金属改性ZSM-5催化剂,并在此基础上引入碱处理改性方法对ZSM-5分子筛进行预处理,成功合成了比表面积和孔隙结构等形貌得到改善的CeMn/ZSM-5-OH催化剂,175~350 ℃内NOx转化率>90%,且相比CeMn/ZSM-5样品低温段活性提升近40%。碱处理过后的CeMn/ZSM-5-OH催化剂生成了更多的Ce3+和Mn4+,加大了其对反应气体NO和NH3的吸附性;XPS结果表明晶格氧参与了Ce3+和Mn4+之间的电子转移作用,有利于NO与NH3的活化,从而推动NH3-SCR反应的进行。Abstract: Nitrogen oxides, as one of the atmospheric pollutants, have caused serious environmental problems, endangering the ecological environment and human health. Selective catalytic reduction of NOx with ammonia (NH3-SCR) has become an important application technology for denitrification. Different from the supported ZSM-5 catalyst synthesized by traditional methods, Ce and Mn bimetallic modified ZSM-5 catalyst was synthesized by one-pot method, and the ZSM-5 molecular sieve was pretreated by alkali. The CeMn/ZSM-5-OH catalyst with improved surface area and pore structure was successfully synthesized. In the performance test, the NOx conversion rate was beyond 90% in the temperature range of 175 to 350 ℃, and the activity was increased by nearly 40%, compared with that of CeMn/ZSM-5 samples in low temperature section. After alkali-treatment, the CeMn/ZSM-5-OH catalyst generated more Ce3+ and Mn4+, which increased the adsorption performance of NO and NH3. The results of XPS showed that lattice oxygen participated in the electron transfer between Ce3+ and Mn4+, which was conducive to the activation of NO and NH3. Thus, the NH3-SCR reaction was promoted.
-
Key words:
- ZSM-5 /
- alkali-treatment /
- pore structure /
- surface acidity /
- NH3-SCR
-
[1] 余沃晖, 张盼, 赵一明, 等. 低温脱硝催化剂研究进展[J]. 无机盐工业, 2022, 54(10): 57-67, 120. [2] PAN W, HE J, HUANG G, et al. Research progress of the selective catalytic reduction with NH3 over ZSM-5 zeolite catalysts for NOx removal[J]. Catalysts, 2023, 13(10): 1381. [3] 喻成龙, 黄碧纯, 杨颖欣. 分子筛应用于低温NH3-SCR脱硝催化剂的研究进展[J]. 华南理工大学学报(自然科学版), 2015, 43(3): 143-150. [4] 骆中璨, 彭波, 夏龙贵, 等. 分子筛ZSM-5改性性能研究进展[J]. 江西化工, 2022, 38(5): 19-24. [5] 张乾蔚 王学涛. 不同金属改性Ce-Mn/ZSM-5催化剂的制备及性能研究[J]. 燃料化学学报, 2019, 47(10): 1265-1272. [6] CAO J, XING M, HAN Y, et al. Improving the hydrothermal stability of ZSM-5 zeolites in 1-Octene aromatization by sequential alkali treatment and phosphorus modification[J]. Catalysts, 2022, 12(12): 1629. [7] CHENG S, LU S, LIU X, et al. Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt-Co catalyst for selective hydrogenation of cinnamaldehyde[J]. Molecules, 2023, 28(4): 1730. [8] HAN D, CHEN Y LI C. The hydrothermal stability of the alkali-treated ZSM-5 and its catalytic performance in catalytic cracking of VGO[J]. Chemical Papers, 2018. 73(1): 215-220. [9] JABŁOŃSKA M, GÓRA-MAREK K, BRUZZESE P C, et al. Influence of framework n(Si)/n(Al) ratio on the nature of Cu species in Cu-ZSM-5 for NH3-SCR-DeNOx[J]. ChemCatChem, 2022, 14(18): e202200627. [10] ZHAO W, SHEN M, ZHU Y, et al. Insights into synergy of copper and acid sites for selective catalytic reduction of NO with ammonia over zeolite catalysts[J]. Catalysts, 2023, 13(2): 301. [11] DOAN T, DANG A, NGUYEN D, et al. Hybrid Cu-Fe/ZSM-5 catalyst prepared by liquid ion-exchange for NOx removal by NH3-SCR process[J]. Journal of Chemistry, 2021: 1-15. [12] LIU B, ZHENG K, LIAO Z, et al. Fe-encapsulated ZSM-5 zeolite with nanosheet-assembled structure for the selective catalytic reduction of NOx with NH3[J]. Industrial & Engineering Chemistry Research, 2020, 59: 8592-9600. [13] YUE Y, LIU B, LV N, et al. Direct synthesis of hierarchical FeCu-ZSM-5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3[J]. ChemCatChem, 2019, 11(19): 4744-4754. [14] WANG Y, JI X, MENG H, et al. Fabrication of high-silica Cu/ZSM-5 with confinement encapsulated Cu-based active species for NH3-SCR[J]. Catalysis Communications, 2020, 138: 105969. [15] CHEN Z, LIU L, QU H, et al. The effect of CeO2 dispersity and active oxygen species on the SCR reaction over Fe-ZSM-5@Ce/meso-SiO2[J]. Catalysis Letters, 2020, 150: 514-523. [16] PENG C, YAN R, PENG H, et al. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures[J]. Journal of Hazardous Materials, 2020, 385: 121593. [17] DEVI T G KANNAN M. X-ray diffraction (XRD) studies on the chemical states of some metal species in cellulosic chars and the Ellingham diagrams[J]. Energy & Fuels, 2007, 21(2): 596-601. [18] ZHU L, ZHANG L, QU H, et al. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. Journal of Molecular Catalysis a-Chemical, 2015, 409: 207-215. [19] 杨全红, 郑经堂, 王茂章, 等. 活性炭纤维对NH3的吸附研究Ⅰ PAN-ACF孔径结构对NH3静态吸附的影响[J]. 新型碳材料, 1998(2): 44-49. [20] 孙爱明, 倪友明, 欧丽娟, 等. 碱处理和Zn改性ZSM-5分子筛上乙醇芳构化性能的研究[J]. 应用化工, 2015, 44(1): 95-98. [21] 袁方, 厉刚, 胡申林. 碱处理对ZSM-5分子筛膜结构及其催化性能的影响[J]. 石油学报(石油加工), 2014, 30(1): 140-144. [22] 刘冬梅, 华志远, 马健, 等. 碱处理ZSM-5分子筛上噻吩烷基化性能的研究[J]. 应用化工, 2014, 43(6): 1021-1024. [23] JI J, TANG Y, HAN L, et al. Cerium manganese oxides coupled with ZSM-5: a novel SCR catalyst with superior K resistance[J]. Chemical Engineering Journal, 2022, 445: 136530. [24] WANG L L, WANG M H, FEI Z Y, et al. Preparation of amorphous MnOx/TiO2 catalyst and its performance in low temperature NH3-SCR[J]. 燃料化学学报 (中英文), 2017, 45(8): 993-1000. [25] DONG Y, JIN B, LIU S, et al. Abundant oxygen vacancies induced by the mechanochemical process boost the low-temperature catalytic performance of MnO2 in NH3-SCR[J]. Catalysts, 2022, 12(10): 1291. [26] ZHANG S, LI H, ZHANG A, et al. Selective catalytic reduction of NOx by low-temperature NH3 over MnxZr1 mixed-oxide catalysts[J]. RSC advances, 2022, 12(3): 1341-1351. [27] RAMANA S, RAO B G, VENKATASWAMY P, et al. Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol[J]. Journal of Molecular Catalysis A: Chemical, 2016, 415: 113-121. [28] MU W, ZHU J, ZHANG S, et al. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis[J]. Catalysis Science & Technology, 2016, 6(20): 7532-7548. [29] YANG S, WANG C, LI J, et al. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study[J]. Applied Catalysis B: Environmental, 2011, 110: 71-80. [30] 郝广源 井宇. V-Ce/TiO2脱硝催化剂的SO2中毒机理研究[J]. 分子催化, 2023, 37(5): 428-438. [31] YAO X, MA K, ZOU W, et al. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chinese Journal of Catalysis, 2017, 38(1): 146-159. [32] TANG X, LI Y, HUANG X, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273. [33] WANG X, DUAN R, LIU W, et al. The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx[J]. Applied Surface Science, 2020, 510: 145517. [34] XIONG S, PENG Y, WANG D, et al. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: improvement of low-temperature activity and sulfur resistance[J]. Chemical Engineering Journal, 2020, 387: 124090. [35] BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, et al. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. Journal of Catalysis, 2015, 325: 145-155. [36] MURUGAN B, RAMASWAMY A, SRINIVAS D, et al. Nature of manganese species in Ce1-xMnxO2-δ solid solutions synthesized by the solution combustion route[J]. Chemistry of Materials, 2005, 17(15): 3983-3993. [37] FAN Z, SHI J-W, GAO C, et al. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: the promoting effect of Gd on the catalytic performance and sulfur resistance[J]. Chemical Engineering Journal, 2018, 348: 820-830. [38] ZHANG D, ZHANG L, SHI L, et al. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013, 5(3): 1127-1136. [39] 崔立峰, 吕誉, 李云强, 等. CeO2/ZrO2对Cu-ZSM-5选择性催化还原NOx的反应活性及抗老化性能的影响[J]. 燃烧科学与技术, 2023, 29(6): 676-684. [40] 孙锦昌, 任翠涛, 赵明新, 等. Cu/Hβ催化剂NH3选择性催化还原NO性能研究[J]. 燃料化学学报(中英文), 2023, 51(6): 823-831. [41] PENG C, YAN R, PENG H, et al. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures[J]. J Hazard Mater, 2020, 385: 121593. [42] CAO F, SU S, XIANG J, et al. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015, 139: 232-239. [43] CAO F, XIANG J, SU S, et al. Ag modified Mn-Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature[J]. Fuel Processing Technology, 2015, 135: 66-72.
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 0
- PDF下载量: 3
- 被引次数: 0