EFFECT OF BLENDING ANTIBIOTIC FILTER RESIDUE ON COMBUSTION PERFORMANCE OF MUNICIPAL SOLID WASTE
-
摘要: 为了掌握抗生素菌渣掺混对城市生活垃圾燃烧性能的影响,选取典型的链霉素菌渣,利用热重分析仪研究了城市生活垃圾掺混链霉素菌渣的燃烧特性和协同效应,采用Kissinger-Akahire-Sunose(KAS)法和Flynn-Wall-Ozawa(FWO)法分析了样品的动力学特征,并在固定床上进行掺混燃烧实验,研究了样品NO排放特征。结果表明:当掺混比为10%时,样品的可燃指数提高了9.7%,综合燃烧特性指数提高了11.1%,平均活化能降低了6.9%,2种物质混燃过程的协同效应主要表现为促进固定碳的燃烧;随着掺混比从10%增加至30%,样品的可燃指数和综合燃烧特性指数逐渐下降,平均活化能逐渐升高,协同效应转变为抑制固定碳的燃烧。NO排放浓度随链霉素菌渣掺混比例的增加而升高,且链霉素菌渣与城市生活垃圾之间的相互作用进一步促进了NO的排放。Abstract: To understand the influence of blending antibiotic filter residue on the combustion performance of municipal solid waste, this paper selected a typical streptomycin residue and studied the combustion characteristics and synergies of municipal solid waste mixed streptomycin residue by thermogravimetric analyzer. The kinetic characteristics of the samples were analyzed by the Kissen-Akahire-Sunose (KAS) method and Flynn-Wall-Ozawa (FWO) method, and the NO emission characteristics of the samples were studied by blended combustion experiments on a fixed bed. The results showed that when the mixture ratio was 10%, the flammability index of the sample increased by 9.7%, the comprehensive combustion characteristic index increased by 11.1%, and the average activation energy decreased by 6.9%. The synergistic effect of the mixed combustion process of the two substances is mainly the promotion on the combustion of fixed carbon. With the increase of the mixing ratio from 10% to 30%, the flammability index and comprehensive combustion characteristic index of the sample gradually decreased, the average activation energy gradually increased, and the synergistic effect changed to inhibit the combustion of fixed carbon. The concentration of NO emission increased with the increase of the mixing proportion of streptomycin residue, and the interaction between streptomycin residue and municipal solid waste further promoted the emission of NO.
-
[1] 陈冠益, 刘环博, 李健, 等. 抗生素菌渣处理技术研究进展[J]. 环境化学,2021,40(2):459-473. [2] 杜家兴, 李辰旭, 周星星, 等. 抗生素菌渣热解特性及氮迁移转化机理研究[J]. 燃料化学学报(中英文),2023,51(7):949-958. [3] 王冰, 刘惠玲, 王璞. 青霉素菌渣理化特性及其资源化利用研究现状[J]. 环境工程,2014,32(2):139-142. [4] 冯丽慧, 邢奕, 杨鹏宇. 抗生素菌渣热解及气态污染物排放特性的研究[J]. 安全与环境工程,2018,25(4):89-96. [5] 李辰旭, 周星星, 万淦, 等. 抗生素菌渣热解动力学与产物特性分析[J]. 环境工程,2023,41(增刊2):595-601. [6] JIANG X G, FENG Y H, LV G J, et al. Bioferment residue: TG-FTIR study and combustion in an MSW incineration plant.[J]. Environmental Science & Technology, 2012, 46(24). [7] 马思路, 洪晨, 邢奕, 等. 抗生素菌渣处置方法综述[J]. 中国资源综合利用,2018,36(12):106-108. [8] 洪晨, 杨强, 王志强, 等. 抗生素菌渣与煤混合燃烧特性及其动力学分析[J]. 化工学报,2017,68(1):360-368. [9] GE Y X, ZHANG G Y, ZHANG J L, et al. Emission characteristics of NOx and SO2 during the combustion of antibiotic mycelial residue[J]. International Journal of Environmental Research, 2022, 19(3): 1581. [10] WANG J Q, LIU J Z, JIN Y Q, et al. Study on the slurry ability and combustion behaviour of coal bioferment residue of drugs slurry[J]. The Canadian Journal of Chemical Engineering, 2018, 96(4): 838-844. [11] WANG C A, GAO X Y, TANG G T, et al. Thermogravimetric study on oxy-fuel co-combustion characteristics of semi-coke and antibiotic filter residue[J]. Journal of Thermal Analysis Calorimetry, 2022, 147(17): 9505-9522. [12] 刘豪, 邱建荣, 董学文, 等. 生物质与煤混烧的燃烧特性研究[J]. 热能动力工程,2002,(5):451-454,540. [13] 闵凡飞, 张明旭. 生物质与不同变质程度煤混合燃烧特性的研究[J]. 中国矿业大学学报,2005(2):107-112. [14] 王玉召, 李江鹏. 生物质与煤混燃的燃烧特性实验研究[J]. 锅炉技术,2010,41(5):72-74. [15] BURATTI C, MOUSAVI S, BARBANERA M, et al. Thermal behaviour and kinetic study of the olive oil production chain residues and their mixtures during co-combustion[J]. Bioresource Technology, 2016, 214. [16] YANG Z Y, BAI M Y, HAN T, et al. Application potential of antibiotic fermentation residue for co-combustion with coal: thermal behavior, gaseous products, and kinetics[J]. Fuel, 2023, 335. [17] WANG C A, JIN L Y, WANG Y K, et al. Thermogravimetric investigation on co-combustion characteristics and kinetics of antibiotic filter residue and vegetal biomass[J]. Journal of Thermal Analysis Calorimetry, 2022: 1-14. [18] HU J, YAN Y, SONG Y, et al. Catalytic combustions of two bamboo residues with sludge ash, CaO, and Fe2O3: bioenergy, emission and ash deposition improvements[J]. Journal of Cleaner Production, 2020, 270(prepublish). [19] GUO J L, ZHENG L, LI Z F, et al. Thermal decomposition of antibiotic mycelial fermentation residues in Ar, air, and CO2-N2 atmospheres by TG-FTIR method[J]. Journal of Thermal Analysis Calorimetry, 2019, 137: 2053-2060. [20] ZHU X D, YANG S J, WANG L, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental Pollution, 2016, 211: 20-27. [21] 庄修政, 宋艳培, 詹昊, 等. 水热污泥与煤在混燃过程中的协同效应特性研究[J]. 燃料化学学报,2018,46(12):1437-1446. [22] MENG F R, TAHMASEBI A, HAN Y N. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & Fuels, 2013, 27(6): 2923-2932. [23] XIE W H, HUANG J L, LIU J Y, et al. Assessing thermal behaviors and kinetics of (co-) combustion of textile dyeing sludge and sugarcane bagasse[J]. Applied Thermal Engineering, 2018, 131: 874-883. [24] WANG G, ZHANG J, SHAO J, et al. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends[J]. Energy Conversion Management, 2016, 124: 414-426. [25] 梁晓锐. 煤/生物质加压富氧燃烧过程中硫氮的迁移和转化特性研究[D]. 杭州: 浙江大学,2022. [26] 冯涛. 富氧气氛下生物质/煤恒温混燃特性及NO、SO2释放规律[D]. 北京: 华北电力大学,2015. [27] 刘豪, 邱建荣, 吴昊, 等. 生物质和煤混合燃烧污染物排放特性研究[J]. 环境科学学报,2002(4):484-488.
点击查看大图
计量
- 文章访问数: 13
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0