中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

餐厨垃圾-剩余污泥物料配比对厌氧共发酵产挥发性脂肪酸的影响

张达 林青山 崔鹏 程伯夷 王宗平 郭刚

张达, 林青山, 崔鹏, 程伯夷, 王宗平, 郭刚. 餐厨垃圾-剩余污泥物料配比对厌氧共发酵产挥发性脂肪酸的影响[J]. 环境工程, 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015
引用本文: 张达, 林青山, 崔鹏, 程伯夷, 王宗平, 郭刚. 餐厨垃圾-剩余污泥物料配比对厌氧共发酵产挥发性脂肪酸的影响[J]. 环境工程, 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015
ZHANG Da, LIN Qingshan, CUI Peng, CHENG Boyi, WANG Zongping, GUO Gang. EFFECTS OF MATERIAL RATIO ON VOLATILE FATTY ACIDS PRODUCTION FROM ANAEROBIC CO-FERMENTATION OF FOOD WASTE AND WASTE-ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015
Citation: ZHANG Da, LIN Qingshan, CUI Peng, CHENG Boyi, WANG Zongping, GUO Gang. EFFECTS OF MATERIAL RATIO ON VOLATILE FATTY ACIDS PRODUCTION FROM ANAEROBIC CO-FERMENTATION OF FOOD WASTE AND WASTE-ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 125-133. doi: 10.13205/j.hjgc.202408015

餐厨垃圾-剩余污泥物料配比对厌氧共发酵产挥发性脂肪酸的影响

doi: 10.13205/j.hjgc.202408015
基金项目: 

湖北省重点研发计划项目“工业含盐废水脱盐、重金属去除及深度脱碳关键技术研究”(2022BCA065)

国家重点基础研究发展计划项目“长江经济带大中城市多源有机固废园区化协同处置及示范”(2019YFC1904005)

国家自然科学基金项目“单质硫强化低碳源污水反硝化除磷机理及调控”(52100040)

详细信息
    作者简介:

    张达(2000-),男,硕士研究生,主要研究方向为固废处理及资源化。M202274061@hust.edu.cn

    通讯作者:

    郭刚(1987-),男,博士,副研究员,主要研究方向为固废处理与资源化、污水处理及资源化。ceguogang@hust.edu.cn

EFFECTS OF MATERIAL RATIO ON VOLATILE FATTY ACIDS PRODUCTION FROM ANAEROBIC CO-FERMENTATION OF FOOD WASTE AND WASTE-ACTIVATED SLUDGE

  • 摘要: 以餐厨垃圾和剩余污泥为研究对象,考察不同物料配比(餐厨垃圾投加比例为0%,25%,50%,75%和100%)对16 d的厌氧共发酵产挥发性脂肪酸(volatile fatty acids,VFAs) 的影响。结果表明:餐厨垃圾的加入有助于有机质的溶解,平衡体系C/N,弥补营养物质,从而提升厌氧发酵系统的性能。当餐厨垃圾投加比例为50%时,厌氧共发酵产VFAs达到最高为(282.8±2.9) mg COD/g VSS。在厌氧发酵过程中,产酸微生物(Prevotella_7,Lactobacillus,Veillonella)丰度逐渐升高,水解酶和产酸酶的相对活性在发酵初期被抑制,在中后期被促进,而产甲烷酶在整个过程均被抑制,从而促进了VFAs的产量。该成果为餐厨垃圾和剩余污泥厌氧共发酵产酸资源化利用提供了一定的理论基础。
  • [1] 李浩, 黄慧群. 餐厨垃圾与污泥厌氧发酵动力学特性分析[J]. 环境工程, 2018,36(7): 107-112.
    [2] LIN Q S, DONG X L, LUO J M, et al. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: performance, microbial community dynamics and metabolism[J]. Bioresource Technology, 2022,361: 127736.
    [3] SRISOWMEYA G, CHAKRAVARTHY M, NANDHINI D G. Critical considerations in two-stage anaerobic digestion of food waste: a review[J]. Renewable and Sustainable Energy Reviews, 2020,119: 109587.
    [4] LIANG T, ELMAADAWY K, LIU B C, et al. Anaerobic fermentation of waste activated sludge for volatile fatty acid production: recent updates of pretreatment methods and the potential effect of humic and nutrients substances[J]. Process Safety and Environmental Protection, 2021,145: 321-339.
    [5] CHENG B Y, JIANG W, ZHANG D, et al. Thiosulfate-assisted Fe2+/persulfate pretreatment effectively alleviating iron dose and enhancing biotransformation of waste activated sludge into high-value liquid products[J]. Chemosphere, 2022,303: 135106.
    [6] HUANG X D, ZHAO J W, XU Q X, et al. Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue[J]. Bioresource Technology, 2019,274: 430-438.
    [7] KAYHANIAN M, RICH D. Sludge management using the biodegradable organic fraction of municipal solid waste as primary substrat[J]. Water Environment Research, 1996,68(2): 240-252.
    [8] MORALES-Polo C, DEL Mar Cledera-Castro M, MORATILLA SORIA B Y. Reviewing the anaerobic digestion of food waste: from waste generation and anaerobic process to its perspectives[J]. Applied Sciences, 2018,8(10): 1804.
    [9] 付胜涛, 于水利, 严晓菊, 等. 剩余活性污泥和厨余垃圾的混合中温厌氧消化[J]. 环境科学, 2006,27(7): 1459-1463.
    [10] 张月, 李勇, 郭志伟, 等. 市政污泥与餐厨垃圾混合两相厌氧消化研究[J]. 环境科学与技术, 2016,39(3): 91-94

    , 110.
    [11] WU Q L, GUO W Q, ZHENG H S, et al. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: the mechanism and microbial community analyses[J]. Bioresource Technology, 2016,216: 653-660.
    [12] 李秋实, 郭祥, 刘彬, 等. 市政污泥与玉米秸秆混合高温厌氧发酵产甲烷研究[J]. 环境工程, 2022,40(7): 139-145.
    [13] CHENG J, DING L K, LIN R C, et al. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: effects of physiochemical properties and mix ratios on fermentation performance[J]. Applied Energy, 2016,184: 1-8.
    [14] 任南琪, 赵丹, 陈晓蕾, 等. 厌氧生物处理丙酸产生和积累的原因及控制对策[J]. 中国科学(B辑), 2002,32(1): 83-89.
    [15] YANG X, LIU X, CHEN S, et al. Volatile fatty acids production from codigestion of food waste and sewage sludge based on β-cyclodextrins and alkaline treatments[J]. Archaea, 2016,2016: 1-8.
    [16] YU W B, WEN Q Q, YANG J K, et al. Unraveling oxidation behaviors for intracellular and extracellular from different oxidants (HOCl vs. H2O2) catalyzed by ferrous iron in waste activated sludge dewatering[J]. Water Research, 2019,148: 60-69.
    [17] FENG L Y, CHEN Y G, ZHENG X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH[J]. Environmental Science & Technology, 2009,43(12): 4373-4380.
    [18] YIN J, YU X Q, ZHANG Y, et al. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: effect of redox potential and inoculum[J]. Bioresource Technology, 2016,216: 996-1003.
    [19] LUO J Y, WU L J, FENG Q, et al. Synergistic effects of iron and persulfate on the efficient production of volatile fatty acids from waste activated sludge: understanding the roles of bioavailable substrates, microbial community & activities, and environmental factors[J]. Biochemical Engineering Journal, 2019,141: 71-79.
    [20] ZHANG P, CHEN Y G, ZHOU Q. Effects of pH on the Waste Activated Sludge Hydrolysis and Acidification under Mesophilic and Thermophilic Conditions[C]. IEEE, 2009.
    [21] ZHANG Z S, GUO Y D, GUO L, et al. Elucidating salinity adaptation and shock loading on denitrification performance: focusing on microbial community shift and carbon source evaluation[J]. Bioresource Technology, 2020,305:123030.
    [22] 王攀, 邱银权, 陈锡腾, 等. 以餐厨垃圾水解酸化液为碳源合成PHA研究[J]. 环境工程, 2018,36(6): 145-149.
    [23] ZIGANSHIN A M, LIEBETRAU J, PRÖTER J, et al. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials[J]. Applied Microbiology and Biotechnology, 2013,97(11): 5161-5174.
    [24] KABISCH A, OTTO A, KONIG S, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803[J]. ISME J, 2014,8(7): 1492-1502.
    [25] 李静, 张宝刚, 刘青松, 等. 导电材料强化微生物直接种间电子传递产甲烷的研究进展[J]. 微生物学报, 2021,61(6): 1507-1524.
    [26] DUAN X, LUO J Y, SU Y, et al. Proteomic profiling of robust acetoclastic methanogen in chrysene-altered anaerobic digestion: global dissection of enzymes[J]. Water Research, 2023,233: 119817.
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-08
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回