POLLUTION CHARACTERISTICS AND RISK ASSESSMENT OF HEAVY METALS AND CHLORIDES IN SOLID WASTE INCINERATION RESIDUES
-
摘要: 为了系统地掌握焚烧残余物污染特征与环境风险,测定了6种样品的化学与矿相组成及重金属和氯污染特征,结合风险评价指数(RAC)和重金属综合毒性指数(STI)评估其环境风险。结果表明:炉排炉飞灰和流化床飞灰污染特征存在较大差异,前者呈现高钙高氯,Cu、Zn、Cd以F2态为主,Pb浸出毒性超标,而后者富含硅铝组分且Cl含量为5.79%。危废飞灰与医废飞灰呈现高钠高氯,Zn、Cd和Ni均以F1态为主,不同的是前者Cu浸出毒性超标,后者则为Zn并以ZnCl2存在。危废与医废炉渣均以SiO2、Al2O3和Fe2O3为主,且氯含量为3.27%,二者Cu、Ni含量分别高达7525.5,991.4,4168.8,628.2 mg/kg。风险评估结果表明:炉排炉、流化床、危废和医废飞灰STI均处于中高风险等级、危废和医废炉渣中各类重金属RAC与STI均处于中低风险等级;Cu或Pb对人体健康处于存在不良影响等级,Cd和Cr均处于较高致癌风险等级。
-
关键词:
- 焚烧飞灰 /
- 焚烧炉渣 /
- 重金属 /
- 污染特征 /
- 环境与人体健康风险评估
Abstract: To systematically grasp the pollution characteristics and environmental risks of incineration residues, their chemical and mineral composition and pollution characteristics of heavy metals and chlorides were analyzed. The risk assessment code (RAC) and synthesis toxicity index (STI) were used to evaluate the environmental risks of heavy metals. Results showed that grate furnace fly ash presented characteristics of high calcium and chlorine, in which Cu, Zn and Cd were mainly in the F2 state, and leaching toxicity of Pb exceeded the limit, while fluidized bed fly ash was rich in SiO2 and Al2O3, with a Cl content of 5.79%. Hazardous waste and medical waste fly ash presented the same characteristics of high sodium and chlorine, in which Zn, Cd and Ni were mainly in the F1 state, but the difference was that the leaching toxicity of Cu of the former exceeded the limit, while the later was Zn, existing in the form of ZnCl2. Both hazardous waste and medical waste incineration slag were rich in SiO2, Al2O3 and Fe2O3 and with a Cl content of 3.27%, and their Cu and Ni contents reached 7525.5, 991.4 mg/kg and 4168.8, 628.2 mg/kg, respectively. Risk assessment indicated that the STI of grate furnace, fluidized bed, hazardous waste and medical fly ash were also all in moderate or high risk levels, and RAC and STI of all kinds heavy metals in hazardous waste and medical waste incineration slag were in low or moderate risk level. Cu or Pb in incineration residues had a negative impact on human health, and Cd and Cr were both at high carcinogenic risk levels. -
[1] 李润东, 聂永丰, 李爱民, 等. 垃圾焚烧飞灰理化特性研究[J]. 燃料化学学报, 2004(2): 175-179. [2] 张宇晨, 陈小朵, 桂思, 等. 福州地区垃圾焚烧飞灰中矿物组分和重金属污染特征[J]. 环境工程, 2022, 40(8): 102-109. [3] 马斌斌, 杨琥, 孙志翱, 等. 城市垃圾焚烧飞灰中氯盐及重金属分离提取技术研究进展[J]. 环境化学, 2024, 43(3): 790-805. [4] 中华人民共和国. 中国统计年鉴:2021[M]. 北京:中国统计出版社,2021. [5] 白晶晶, 张增强, 闫大海, 等. 水洗对焚烧飞灰中氯及重金属元素的脱除研究[J]. 环境工程, 2012, 30(2): 104-108. [6] 卢盛鑫, 刘美佳, 崔长颢, 等. 生活垃圾焚烧飞灰水洗预处理过程的重金属去除特性[C]//中国环境科学学会环境工程分会.中国环境科学学会2022年科学技术年会——环境工程技术创新与应用分会场论文集(一). 2022:6. [7] XUE Y, LIU X M. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: a review[J]. Chemical Engineering Journal, 2021, 420. [8] 刘敬勇, 孙水裕. 焚烧飞灰高温过程中重金属的挥发及其氯转化特征[J]. 环境科学, 2012, 33(9): 3279-3287. [9] LI J, ZHANG S Q, WANG Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks[J]. Journal of Hazardous Materials, 2020, 400: 123191. [10] ZHAN X Y, WANG L A, WANG L, et al. Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite[J]. Chemosphere, 2021, 263: 127914. [11] BOGUSH A A, STEGEMANN J A, ZHOU Q, et al. Co-processing of raw and washed air pollution control residues from energy-from-waste facilities in the cement kiln[J]. Journal of Cleaner Production, 2020, 254: 119924. [12] 陈清, 汪屈峰, 李艳, 等. 华南某垃圾焚烧厂焚烧飞灰理化特性及重金属形态研究[J]. 环境卫生工程, 2019, 27(4): 13-18. [13] 沈东升, 鲍祺祺, 邱钧健, 等. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制[J]. 环境科学学报, 2022, 42(9): 238-244. [14] 孙英杰, 王琰, 谷凯, 等. 稳定化飞灰填埋处置环境中二噁英溶出影响因素研究综述[J]. 环境工程, 2022, 40(8): 225-230,238. [15] 王雨婷. 炉排炉垃圾焚烧飞灰的水洗脱氯及二噁英降解试验研究[D]. 杭州:浙江大学, 2019. [16] 金宜英, 田洪海, 聂永丰, 等.3个城市生活垃圾焚烧炉飞灰中二噁英类分析[J]. 环境科学, 2003, (3): 21-25. [17] 郭梦茹, 张冰如, 席佳锐, 等. 垃圾分类前后焚烧飞灰的理化性质及重金属污染特性[J]. 环境工程技术学报, 2022, 12(3): 843-850. [18] LI R D, SHU T C, LI Y L, et al. Migration characteristics and toxicity evaluation of heavy metals during the preparation of lightweight aggregate from sewage sludge[J]. Environmental Science and Pollution Research, 2019, 26(9): 9123-9136. [19] 刘娅君, 李彩霞, 梅楠, 等. 三峡库区稻田土壤重金属污染特征及风险评价[J]. 环境科学, 2023, 44(6): 3520-3530. [20] 倪海凤, 旦增, 周文武, 等. 拉萨市垃圾焚烧飞灰重金属特性分析及风险评价[J]. 环境工程,2022, 40(3): 89-93,131. [21] 吕紫娟. 典型城市生活垃圾焚烧飞灰特性分析和重金属稳定化效果研究[D]. 青岛:青岛理工大学,2021. [22] 保欣晨, 马娇阳, 徐武美, 等. 西南某矿区土壤重金属的人体生物有效性及健康风险评估[J]. 土壤学报, 2023, 60(2): 458-468. [23] 黄煜韬, 施维林, 纪娟, 等. 基于BP神经网络对某电镀厂土壤重金属预测及人体健康风险评价[J]. 生态毒理学报, 2022, 17(2): 278-289. [24] 侯霞丽, 李晓东, 陈彤, 等. 垃圾焚烧飞灰中主要元素的深度分布及形态[J]. 浙江大学学报(工学版), 2015, 49(5): 930-937. [25] 孙进, 谭欣, 张曙光, 等. 我国14座生活垃圾焚烧厂飞灰的物化特性分析[J]. 环境工程, 2021, 39(10):124-128. [26] 李兴杰. 国内部分地区危废焚烧灰渣特征调研分析[J]. 有色冶金节能, 2022, 38(4): 59-66. [27] SHEN W Q, ZHU N W, XI Y H, et al. Effects of medical waste incineration fly ash on the promotion of heavy metal chlorination volatilization from incineration residues[J]. Journal of Hazardous Materials, 2022, 425: 128037. [28] XI Y H, ZHU N W, HUANG J L, et al. Na2O induced stable heavy metal silicates phase transformation and glass network depolymerization[J]. Journal of Cleaner Production, 2022, 380: 135009.
点击查看大图
计量
- 文章访问数: 18
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0