中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥厌氧发酵产氢工艺过程模拟研究进展

王晶惠 刘璐 郑成志 陈毅凡 国泽

王晶惠, 刘璐, 郑成志, 陈毅凡, 国泽. 污泥厌氧发酵产氢工艺过程模拟研究进展[J]. 环境工程, 2024, 42(8): 142-149. doi: 10.13205/j.hjgc.202408017
引用本文: 王晶惠, 刘璐, 郑成志, 陈毅凡, 国泽. 污泥厌氧发酵产氢工艺过程模拟研究进展[J]. 环境工程, 2024, 42(8): 142-149. doi: 10.13205/j.hjgc.202408017
WANG Jinghui, LIU Lu, ZHENG Chengzhi, CHEN Yifan, GUO Ze. ADVANCEMENTS IN PROCESS SIMULATION OF ANAEROBIC FERMENTATION HYDROGEN PRODUCTION FROM SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 142-149. doi: 10.13205/j.hjgc.202408017
Citation: WANG Jinghui, LIU Lu, ZHENG Chengzhi, CHEN Yifan, GUO Ze. ADVANCEMENTS IN PROCESS SIMULATION OF ANAEROBIC FERMENTATION HYDROGEN PRODUCTION FROM SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 142-149. doi: 10.13205/j.hjgc.202408017

污泥厌氧发酵产氢工艺过程模拟研究进展

doi: 10.13205/j.hjgc.202408017
基金项目: 

广东粤海揭榜制项目(GJS-YF-LX202207280015)

详细信息
    作者简介:

    王晶惠(1984-),女,工程师,主要研究方向为城市供水节能降漏及污水处理。clarewih@163.com

    通讯作者:

    刘璐(1995-),女,博士研究生在读,主要研究方向为固体废弃物处理与资源化技术。hitluliu@163.com

ADVANCEMENTS IN PROCESS SIMULATION OF ANAEROBIC FERMENTATION HYDROGEN PRODUCTION FROM SLUDGE

  • 摘要: 氢气作为一种理想的洁净能源,具备出色的能源产出效率、环境友好和可持续再生等特点。然而,氢气产出量的不足制约了其工业应用。因此亟需开发一种更具经济效益的制氢技术。通过利用废弃的活性污泥进行厌氧发酵生物制氢,不仅操作简便且能源消耗较低,经济性突出。在污泥厌氧发酵产氢过程模拟方面,过程模型具备数据分析和预测、参数和操作策略优化、系统和设计优化能力,以及多因素分析和系统建模的能力。透过构建过程模型,能够更好地理解和引导污泥产氢过程,实现高效、稳定和可持续的污泥厌氧发酵制氢技术。然而,不同厌氧发酵过程模型各自具备优势和限制,有必要总结过程模型研究的进展,以便根据实际情况选择合适的模型进行发酵过程的优化和预测,以获得更精确的模拟结果,扩大模型的适用范围。基于此,综合分析了废弃活性污泥厌氧发酵产氢的最新工艺进展,以及厌氧发酵过程建模在预测和优化方面的应用现状及局限性,有助于推动污泥厌氧发酵产氢的相关应用,更有效地实现污泥资源的可持续利用。
  • [1] 李峰哲,丁杰,郭婉茜,等. 卧式CSTR生物制氢反应器设计与流场数值模拟[J]. 太阳能学报,2021(10):042.
    [2] LI Y F, SURYADI B, YAN J J, et al. A strategic roadmap for ASEAN to develop hydrogen energy: economic prospects and carbon emission reduction[J]. International Journal of Hydrogen Energy, 2023, 48(30):11113-11130.
    [3] IBRAHIM A, PASKEVICIUS M, BUCKLEY C E. Chemical compression and transport of hydrogen using sodium borohydride[J]. Sustainable Energy & Fuels, 2023, 7(5):1196-1203.
    [4] SRISOWMEYA G, CHAKRAVARTHY M, DEVI G N. Critical considerations in two-stage anaerobic digestion of food waste: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 119:109587.
    [5] DAHIYA S, CHATTERJEE S, SARKAR O, et al. Renewable hydrogen production by dark-fermentation: current status, challenges and perspectives[J]. Bioresour Technol, 2021, 321:124354.
    [6] CHEN Y, YIN Y N, WANG J L. Recent advance in inhibition of dark fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(7):5053-5073.
    [7] WANG F, LUO J, FANG S, et al. Mechanisms of allicin exposure for the sludge fermentation enhancement: focusing on the fermentation processes and microbial metabolic traits[J]. Journal of Environmental Sciences, 2022(5):253-264.
    [8] HARIRCHI S, WAINAINA S, SAR T, et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review[J]. Bioengineered, 2022, 13(3):6521-6557.
    [9] QUAN L M, KAMYAB H, YUZIR A, et al. Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment[J]. Fuel, 2022, 316:123199.
    [10] SOARES J F, CONFORTIN T C, TODERO I, et al. Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects[J]. Renewable and Sustainable Energy Reviews, 2020, 117.
    [11] 曲媛媛,任南琪. L-半胱氨酸对连续流发酵生物制氢的促进作用[J]. 哈尔滨工程大学学报,2012,33(12):1559-1563.
    [12] SINGH T, UPPALURI R V S. Optimizing biogas production: a novel hybrid approach using anaerobic digestion calculator and machine learning techniques on Indian biogas plant[J]. Clean Technologies and Environmental Policy, 2023,25(10):3319-3343.
    [13] GARCÍA-GEN S, SANTOS L O, VANDE Wouwer A. Application of a Nonlinear Model Predictive Controller to the Anaerobic Digestion of Readily Biodegradable Wastes[J]. IFAC Papers online, 2022, 55(7):909-914.
    [14] CORTÉS L G, BARBANCHO J, LARIOS D F, et al. Full-scale digesters: model predictive control with online kinetic parameter identification strategy[J]. 2022, 15(22):8594.
    [15] WANG X, GAO C, QI X, et al. Enhancing sludge fermentation and anaerobic digestion by mechanical cutting pretreatment[J]. Journal of Water Process Engineering, 2020:101812.
    [16] CHENG W X, WANG L L, XU Y, et al. Performance and mechanism of different pretreatment methods for inoculated sludge in biohydrogen production[J]. Bioresource Technology, 2023, 383:129234.
    [17] LIU L, ZHANG J, CHEN, Y F, et al. Anaerobic fluidized-bed membrane bioreactor for treatment of liquid fraction of sludge digestate: performance and agricultural reuse analysis[J]. Sustainability, 2023, 15(9):7698.
    [18] HU J, LI Z, TAO W. Calcium hypochlorite promotes dark fermentative hydrogen production from waste activated sludge[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(7):2509-2521.
    [19] PANG H, JIAO Q, HE J, et al. Enhanced short-chain fatty acids production through a short-term anaerobic fermentation of waste activated sludge: synergistic pretreatment of alkali and alkaline hydrolase blend[J]. Journal of Cleaner Production, 2022, 342:130954.
    [20] XIN X, PANG H, SHE Y, et al. Insights into redox mediators-resource harvest/application with power production from waste activated sludge through freezing/thawing-assisted anaerobic acidogenesis coupling microbial fuel cells[J]. Sensors and Actuators, B. Chemical, 2020, 311:123469.
    [21] TYAGI V K, ANGÉRIZ C, RUBÉN ÁLvarez-Gallego C J, et al. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge—optimization of treatment conditions[J]. Bioresour Technol, 2014, 164:408-415.
    [22] HAQ Z U, ULLAH H, KHAN M N A. Hydrogen production optimization from sewage sludge supercritical gasification, process using machine learning methods integrated with genetic algorithm[J]. Chemical Engineering Research & Design, 2022:184.
    [23] NGUYEN V K, CHAUDHARY D K, DAHAL R H, et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge[J]. Fuel, 2020, 285:119105.
    [24] 宋青青,任宏宇,孔凡英,等. 不同预处理方法促进剩余污泥发酵制氢研究进展[J]. 中国环境科学,2021(10):041.
    [25] HU J, GUO B, LI Z, et al. Freezing pretreatment assists potassium ferrate to promote hydrogen production from anaerobic fermentation of waste activated sludge[J]. Science of the Total Environment, 2021, 781:146685.
    [26] LIU X, WU Y, XU Q, et al. Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge[J]. Water Research, 2021, 189:116645.
    [27] ZARAK M, HUI C, MIAO T. A critical review on advanced anaerobic membrane bioreactors (AnMBRs) for wastewater treatment: advanced membrane materials and energy demand[J]. Environment Science: Water Research & Technology, 2022, 8:2126.
    [28] TRCHOUNIAN K, ABRAHAMYAN V, POLADYAN A, et al. Escherichia coli growth and hydrogen production in batch culture upon formate alone and with glycerol co-fermentation at different pHs[J]. International Journal of Hydrogen Energy, 2015, 40(32):9935-9941.
    [29] YANG G, YIN Y, WANG J. Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures[J]. International Journal of Hydrogen Energy, 2019, 44(26):13147-13156.
    [30] ALEMAHDI N, MAN H C, ABD RAHMAN N, et al. Enhanced mesophilic bio-hydrogen production of raw rice straw and activated sewage sludge by co-digestion[J]. International Journal of Hydrogen Energy, 2015, 40(46):16033-16044.
    [31] DING L, CHENG J, XIA A, et al. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass[J]. Bioresource Technology, 2016:224-231.
    [32] GARCÍA-Depraect O, GÓMEZ-Romero J, LEÓN-Becerril E, et al. A novel biohydrogen production process: co-digestion of vinasse and Nejayote as complex raw substrates using a robust inoculum[J]. International Journal of Hydrogen Energy, 2017, 42(9):1-12.
    [33] KIM D H, LEE M K, JUNG K W, et al. Alkali-treated sewage sludge as a seeding source for hydrogen fermentation of food waste leachate[J]. International Journal of Hydrogen Energy, 2013, 38(35):15751-15756.
    [34] ZHOU P, ELBESHBISHY E, NAKHLA G. Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids[J]. Bioresource Technology, 2013, 130(Complete):710-718.
    [35] GUPTA M, VELAYUTHAM P, ELBESHBISHY E, et al. Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(36):20958-20967.
    [36] 张存胜,王文娟,王振斌,等. 产氢菌的分离鉴定及发酵性能[J]. 化工进展, 2016, 35(4):1184-1189.
    [37] WADJEAM P, REUNGSANG A, IMAI T, et al. Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(29):14694-14706.
    [38] YANG Y. Biohydrogen production from co-fermentation of fallen leaves and sewage sludge[J]. Bioresource Technology, 2019, 285:121342.
    [39] YANG G, WANG J. Biohydrogen production by co-fermentation of sewage sludge and grass residue: effect of various substrate concentrations[J]. Fuel, 2018, 237(FEB.1):1203-1208.
    [40] BALDI F, PECORINI I, IANNELLI R. Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production[J]. Renewable Energy, 2019, 143:1755-1765.
    [41] NATHAO C, SIRISUKPOKA V, PISUTPAISAL N. Production of hydrogen and methane by one and two stage fermentation of food waste[J]. International Journal of Hydrogen Energy, 2013, 38(35):15764-15769.
    [42] AN Q, CHENG J R, WANG Y T, et al. Performance and energy recovery of single and two stage biogas production from paper sludge: clostridium thermocellum augmentation and microbial community analysis[J]. Renewable Energy, 2020, 148:214-222.
    [43] Ramos L R, Silva E L. Thermophilic hydrogen and methane production from sugarcane stillage in two-stage anaerobic fluidized bed reactors[J]. International Journal of Hydrogen Energy, 2018, 45: 5239-5251.
    [44] KIM M, LIU C, NOH J W, et al. Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions[J]. International Journal of Hydrogen Energy, 2013, 38(21):8648-8656.
    [45] THTI H, KAPARAJU P, RINTALA J. Hydrogen and methane production in extreme thermophilic conditions in two-stage (upflow anaerobic sludge bed) UASB reactor system[J]. International Journal of Hydrogen Energy, 2013, 38(12):4997-5002.
    [46] WANG Z, SHAO S, ZHANG C, et al. Pretreatment of vinegar residue and anaerobic sludge for enhanced hydrogen and methane production in the two-stage anaerobic system[J]. International Journal of Hydrogen Energy, 2015, 40: 4494-4501.
    [47] TAO Z, WANG D, YAO F, et al. Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge[J]. The Science of the Total Environment, 2020, 704(Feb. 20):135849.1-135849.8.
    [48] GIROTTO F, PENG W, RAFIEENIA R, et al. Effect of aeration applied during different phases of anaerobic digestion[J]. Waste and Biomass Valorization, 2018, 9: 161-174.
    [49] SFFA B, RONG L A, WXS A, et al. Enhancing energy recovery from corn straw via two-stage anaerobic digestion with stepwise microaerobic hydrogen fermentation and methanogenesis[J]. Journal of Cleaner Production, 2020, 247:119651.
    [50] ZIARA R, MILLER D N, SUBBIAH J, et al. Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community[J]. International Journal of Hydrogen Energy, 2019, 44(2):661-673.
    [51] MONROY I, BUITRON G. Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: a review[J]. Journal of Biotechnology, 2020, 317:39-47.
    [52] JI Y, SULTAN M, KIM D, et al. Effect of silica-core gold-shell nanoparticles on the kinetics of biohydrogen production and pollutant hydrogenation via organic acid photofermentation over enhanced near-infrared illumination[J]. International Journal of Hydrogen Energy, 2021, 46(11):7821-7835.
    [53] ZAGRODNIK R, LANIECKI, M. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor[J]. Bioresource Technology, 2018, 224:298-306.
    [54] SAFARIAN S, SARYAZDI S M E, UNNTHORSSON R, et al. Modeling of hydrogen production by applying biomass gasification: artificial neural network modeling approach[J]. Fermentation, 2021, 7(2):71.
    [55] ALI A, AL-MUSSAWY H, GHAZAL M, et al. Experimental and theoretical study for hydrogen biogas production from municipal solid waste[J]. Pollution, 2019, 5(1):147-159.
    [56] SEPPAELAE J J, LARJO A, AHO T, et al. Prospecting hydrogen production of Escherichia coli by metabolic network modeling[J]. International Journal of Hydrogen Energy, 2013, 38(27):11780-11789.
    [57] BLAZQUEZ B, SAN LEON D, ROJAS A, et al. New insights on metabolic features of bacillus subtilis based on multistrain genome-scale metabolic modeling[J]. International Journal of Molecular Sciences, 2023, 24(8):7091.
    [58] SCHWALM N D, MOJADEDI W, GERLACH E S, et al. Developing a microbial consortium for enhanced metabolite production from simulated food waste[J]. Fermentation, 2019, 5(4):98.
    [59] Cuevas D A, Janaka E, Henry C S, et al. From DNA to FBA: How to build your own genome-scale metabolic model[J]. Frontiers in Microbiology, 2016, 75(7):907.
    [60] SRINIVASAN S, CLUETT W R, MAHADEVAN R. Constructing kinetic models of metabolism at genome-scales: a review[J]. Biotechnology Journal, 2015, 10(9):1345-1359.
    [61] RAFIEENIA R, PIVATO A, LAVAGNOLO M C, et al. Pre-treating anaerobic mixed microflora with waste frying oil: a novel method to inhibit hydrogen consumption[J]. Waste Management, 2017, 71(Jan.):129-136.
    [62] PARK J, PARK J, SIM B, et al. Formation of a dynamic membrane altered the microbial community and metabolic flux in fermentative hydrogen production[J]. Bioresource Technology, 2019, 282:63-68.
    [63] GUELLOUT Z, CLION V, BENGUERBA Y, et al. Study of the dark fermentative hydrogen production using modified ADM1 models[J]. Biochemical Engineering Journal, 2018, 132:9-19.
    [64] SHEIK A G, SEEPANA M M, AMBATI S R. A model-based approach to study the effect of temperature in plant-wide biological wastewater treatment plants[J]. Journal of Water Chemistry and Technology, 2022, 44(3):182-190.
    [65] ANDRÉS DONOSO-BRAVO, TORRES-LOZADA P, PARRA B. Energy balance and carbon dioxide emissions comparison through modified anaerobic digestion model No 1 for single-stage and two-stage anaerobic digestion of food waste[J]. Biomass and Bioenergy, 2020, 142:105814.
    [66] MONTECCHIO D, ASTALS S, CASTRO V D, et al. Anaerobic co-digestion of food waste and waste activated sludge: ADM1 modelling and microbial analysis to gain insights into the two substrates' synergistic effects[J]. Waste Management, 2019, 97:27-37.
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-25
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回