SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU
-
摘要: 典型电子废物拆解区土壤中镉(Cd)的污染特征与迁移特性尚不明确。以浙江台州某典型电子废物拆解区为例,通过污染调查、等温吸附实验、土柱实验与HYDRUS-1D软件探究Cd在土壤中的垂向污染特征与迁移特性。构建降雨淋溶作用下堆积渣体溶出的Cd的迁移模型,预测其在研究区土壤中的迁移情况。结果表明:土壤中Cd污染主要存在于研究区西南侧,该处有近30年的电子废物堆积渣体淋溶历史,Cd污染主要存在于0~40 cm土壤中。Cd在土壤中的等温吸附符合Langmuir方程,KL和qm分别为0.0373 L/kg和5465 mg/kg。调参后的两点模型(TSM模型)对Cd在土柱中的穿透过程拟合效果良好(R2=0.998),利用TSM模型预测了实际情景下Cd在土壤中的垂向污染现状,预测值与实测值较接近(R2=0.970),进一步验证了模型的准确性。堆积渣体淋溶情景下Cd的长期迁移情况预测结果表明:Cd污染主要存在于包气带浅层土壤中。当淋溶液Cd浓度为0.02 mg/L时,淋溶100 a时包气带底端淋出液中Cd浓度为0.0042 mg/L,尚未超过GB/T 14848—2017《地下水质量标准》Ⅲ类标准,该情景下地下水中Cd的污染风险较小。因此,对于浙江台州电子废物堆积渣体,需重点关注Cd在浅层土壤中的污染。建议及时清理拆解渣体,避免其长时间接受降雨淋溶。而对于渣体堆积时间<30年的区域,应重点修复0~40 cm深度土壤。Abstract: The pollution and migration characteristics of cadmium (Cd) in typical e-waste disposal areas are still unclear. Thus, the electronic waste dismantling area in Taizhou, Zhejiang, was selected as the research area. The vertical pollution and migration characteristics of Cd in soil were studied through pollution investigation, isothermal adsorption experiment, soil column experiment, and HYDRUS-1D software. The migration model of Cd dissolved from accumulated slag under rainfall leaching was established, and its migration in the soil of the study area was predicted. The results showed that Cd pollution in the soil mainly exists in the southwest of the study area, where there has been a history of leachation of e-waste deposits for nearly 30 years, and soil Cd pollution mainly exists in the depth of 0 to 40 cm. The isothermal adsorption of Cd in the vadose zone soil conformed to the Langmuir equation, with KL and qm of 0.0373 L/kg and 5465 mg/kg, respectively. The two-site model (TSM model) could well simulate the penetration process of Cd in the soil column (R2=0.998). The migration simulation of the accumulated slag in the actual electronic waste dismantling area using the TSM model showed that the measured and simulated values of Cd concentration in the soil of the study area were consistent (R2=0.970), which further verified the reliability of the model. A further 100-year migration simulation was carried out for the Cd dissolved from the accumulated slag. The results indicated that when the Cd concentration eluted from the accumulated slag was 0.02 mg/L, the Cd concentration in the leaching solution at the bottom of the vadose zone in the 100th year was 0.0042 mg/L, which did not exceed Class Ⅲ water quality standard specified in Groundwater Quality Standard (GB/T 14848—2017), indicating that there was no risk of Cd pollution in groundwater under this scenario, and Cd pollution mainly existed in the vadose zone soil. In conclusion, for the slag leaching scenario in the informal dismantling area in Taizhou, Zhejiang, it was necessary to focus on the risk of Cd contamination in the vadose zone soil. It is recommended to clean up and disassemble the slag in time to avoid receiving rain leaching for a long time. However, for areas where the accumulation time of the slag body is less than 30 years, the surface soil (with a depth of 0~40 cm) should be prioritized in remediation.
-
Key words:
- e-waste /
- Cd /
- the two-site model /
- pollution characteristics /
- numerical simulation
-
[1] 张昱, 胡君利, 白建峰, 等. 电子废弃物拆解区周边农田土壤重金属污染评价及成因解析[J]. 生态环境学报, 2017, 26(7):1228-1234. [2] HUANG W L, SHI X L, WU K S, Human body burden of heavy metals and health consequences of Pb exposure in Guiyu, an E-waste recycling town in China[J]. International Journal of Environmental Research and Public Health, 2021, 18(23):12428. [3] 薛成杰, 方战强, 王炜. 电子废物拆解场地复合污染土壤修复技术研究进展[J]. 环境污染与防治 2021, 43(1):103-108. [4] KONG D G, DU Y M, LUO M, et al. Environmental effects of heavy metals from the E-waste dismantling site, south China[J]. Soil & Sediment Contamination, 2021, 30(6):714-729. [5] LIN S Y, ALI M U, ZHENG C M, et al. Toxic chemicals from uncontrolled e-waste recycling: exposure, body burden, health impact[J]. Journal of Hazardous Materials, 2022, 426:127792. [6] 张胜军, 周欣, 李沐霏, 等. 电子垃圾拆解区周边农田土壤中多溴联苯醚污染特征及其环境迁移行为研究[J]. 环境污染与防治, 2018, 40(7):819-823. [7] 纪昂, 王建波, 郭杰, 等. 废旧电路板加热拆解过程中颗粒物的排放及其在人体呼吸系统的沉积特征[J]. 环境污染与防治, 2017, 39(6):583-587. [8] 郑宇娜, 刘鹏, 刘金河, 等. 台州市典型电子垃圾拆解场地周边农田土壤重金属污染特征和来源解析[J]. 农业环境科学学报, 2022, 41(7):1442-1451. [9] 赵伟奇. 模拟酸雨条件下旧电器拆解垃圾溶出污染物的研究[D]. 杭州: 浙江工业大学,2005. [10] 刘金河, 周长瑞, 郑宇娜, 等. 台州典型电子废物拆解区土壤中铜的迁移规律模拟[J]. 环境污染与防治, 2022, 44(11):1415-1421. [11] PURANDARA B K, SUJITHA V, SHIVAPUR A V, et al. Modelling of soil moisture movement and solute transport in parts of malaprabha command[J]. Journal of the Geological Society of India, 2021, 97(3):293-296. [12] ZHANG Y, REN B Z, HURSTHOUSE A S, et al. Study on the migration rules of Sb in antimony ore soil based on HYDRUS-1D[J]. Polish Journal of Environmental Studies, 2019, 28(2):965-972. [13] SIMUNEK J, VAN GENUCHTEN M T, SEJNA M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, 15(7):1539-1663. [14] 许雪婷, 班如雪, 金有杰, 等. 基于HYDRUS-1D模型的平原河网区农田氮素迁移特征研究[J]. 农业环境科学学报 2022, 41(2):400-410. [15] 万朔阳, 吴勇, 唐学芳, 等. 基于Hydrus-1D对西坝镇农田土壤重金属迁移模拟及空间解析[J]. 科学技术与工程 2020, 20(2):854-859. [16] 杨书慧. 江浙农田土壤重金属污染特征及环境基准研究[D]. 北京: 中国环境科学研究院,2021. [17] WANG H N, LIU J C, YAO J N, et al. Transport of Tl(I) in water-saturated porous media: role of carbonate, phosphate and macromolecular organic matter[J]. Water Research, 2020, 186:10. [18] YANG B, QIU H, ZHANG P H, et al. Modeling and visualizing the transport and retention of cationic and oxyanionic metals (Cd and Cr) in saturated soil under various hydrochemical and hydrodynamic conditions[J]. Science of the Total Environment, 2022, 812:12. [19] 彭盼盼. 铬在土壤—地下水系统中迁移转化的试验与数值模拟研究[D]. 武汉: 武汉大学,2017. [20] 李春辉. 制革污泥中特征污染物在包气带中的迁移机理研究[D]. 郑州: 华北水利水电大学,2019. [21] BURAGOHAIN P, GARG A, FENG S, et al. Understanding the retention and fate prediction of copper ions in single and competitive system in two soils: an experimental and numerical investigation[J]. Science of the Total Environment, 2018, 634:951-962. [22] 郭佳雯. 红壤地区铅锌冶炼厂土壤铅镉污染特征及其形成机制[D]. 杭州: 浙江大学,2021. [23] 王振兴. 重金属Cr(Ⅵ)迁移模型及健康风险动态评价预警研究[D]. 长沙: 中南大学,2011. [24] 郑顺安. 我国典型农田土壤中重金属的转化与迁移特征研究[D]. 杭州: 浙江大学,2010. [25] 王志涛, 缴锡云, 韩红亮, 等. 土壤垂直一维入渗对VG模型参数的敏感性分析[J]. 河海大学学报(自然科学版), 2013, 41(1):80-84. [26] 张瑶. 典型土壤中Cr(Ⅵ)的吸附与迁移特征研究[D]. 北京: 中国地质大学,2017. [27] 杨欢. 基于平衡和非平衡模型的包气带土壤中氨氮运移过程研究[D]. 北京: 中国地质大学(北京),2015. [28] ZHANG H J, LU T T, SHANG Z B, et al. Transport of Cd2+ through saturated porous media: insight into the effects of low-molecular-weight organic acids[J]. Water Research, 2020, 168:12. [29] GE M T, WANG D J, YANG J W, et al. Co-transport of U(Ⅵ) and akaganeite colloids in water-saturated porous media: role of U(Ⅵ) concentration, pH and ionic strength[J]. Water Research, 2018, 147:350-361. [30] ZHOU X Y, GUO J, LIN K F, et al. Leaching characteristics of heavy metals and brominated flame retardants from waste printed circuit boards[J]. Journal of Hazardous Materials, 2013, 246:96-102. [31] 黄国忠, 赵强, 高金凤, 等. 再生水灌溉条件下土壤Cd的运移及模拟研究[J]. 灌溉排水学报, 2016, 35(1):27-31. [32] 乔雄彪. 基于保护地下水的Cr(Ⅵ)土壤筛选值计算方法研究[D]. 北京: 中国地质大学(北京),2018. [33] 汪庆华, 董岩翔, 周国华, 等. 浙江省土壤地球化学基准值与环境背景值[J]. 生态与农村环境学报, 2007, (2):81-88. [34] TANG X J, SHEN C F, SHI D Z, et al. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China[J]. Journal of Hazardous Materials, 2010, 173(1/2/3):653-660. [35] ZHOU C, MA Q, YU W, et al. Accumulation of heavy metals in soil and maize after 17-year pig manure application in Northeast China[J]. Plant, Soil and Environment, 2020, 66(2):65-72. [36] 杨越晴, 董颖博, 林海. 黏土矿物对土壤中重金属的钝化作用研究进展[J]. 金属矿山, 2018, (9):33-40. [37] LIU Y T, ZHAO X, HU X. Sorption of Pb(Ⅱ) and Cd(Ⅱ) on the colloid of black soil, red soil, and fine powder kaolinite: effects of pH, ionic strength and organic matter[J]. Environmental Pollutants and Bioavailability, 2019, 31(1):85-93. [38] 赵丽, 张薏旸, 卫杰, 等. 垃圾渗滤液中铁和铬在地下水中的迁移转化规律[J]. 环境科学与技术, 2020, 43(3):74-79. [39] 茅佳俊, 刘清. 基于Hydrus-1D的粉煤灰堆场Cr(Ⅵ)在包气带中迁移规律的研究[J]. 能源环境保护, 2019, 33(1):13-18,25. [40] CHOTPANTARAT S, ONG S K, SUTTHIRAT C, et al. Effect of pH on transport of Pb2+, Mn2+, Zn2+ and Ni2+ through lateritic soil: column experiments and transport modeling[J]. Journal of Environmental Sciences, 2011, 23(4):640-648. [41] FONSECA B, TEIXEIRA A, FIGUEIREDO H, et al. Modelling of the Cr(Ⅵ) transport in typical soils of the North of Portugal[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):756-762. [42] ZHANG H, SELIM H M. Modeling the transport and retention of arsenic (Ⅴ) in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1677-1687. [43] 焦独醒, 李家斌, 李进花, 等. 应用HYDRUS-1D模型分析Cr(Ⅵ)在负载针铁矿的石英砂中的迁移特征[J]. 环境工程, 2023, 41(2):1186-1189,1195.
点击查看大图
计量
- 文章访问数: 13
- HTML全文浏览量: 2
- PDF下载量: 1
- 被引次数: 0