中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污水制氢的现状与未来

朱英杰 杨丹卉 周方鹤 付鹏波 杨强 吕文杰 刘博 汪华林

朱英杰, 杨丹卉, 周方鹤, 付鹏波, 杨强, 吕文杰, 刘博, 汪华林. 污水制氢的现状与未来[J]. 环境工程, 2024, 42(9): 13-28. doi: 10.13205/j.hjgc.202409002
引用本文: 朱英杰, 杨丹卉, 周方鹤, 付鹏波, 杨强, 吕文杰, 刘博, 汪华林. 污水制氢的现状与未来[J]. 环境工程, 2024, 42(9): 13-28. doi: 10.13205/j.hjgc.202409002
ZHU Yingjie, YANG Danhui, ZHOU Fanghe, FU Pengbo, YANG Qiang, LÜ Wenjie, LIU Bo, WANG Hualin. THE PRESENT AND FUTURE OF HYDROGEN PRODUCTION FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 13-28. doi: 10.13205/j.hjgc.202409002
Citation: ZHU Yingjie, YANG Danhui, ZHOU Fanghe, FU Pengbo, YANG Qiang, LÜ Wenjie, LIU Bo, WANG Hualin. THE PRESENT AND FUTURE OF HYDROGEN PRODUCTION FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 13-28. doi: 10.13205/j.hjgc.202409002

污水制氢的现状与未来

doi: 10.13205/j.hjgc.202409002
基金项目: 

国家自然科学基金青年科学基金项目(52400080)

详细信息
    作者简介:

    朱英杰(2001-),男,硕士研究生,主要研究方向为工业废水处理技术。zhuyingjie3761@163.com

    通讯作者:

    杨丹卉(1994-),女,博士后,主要研究方向为工业废水处理技术。yangdh@ecust.edu.cn

THE PRESENT AND FUTURE OF HYDROGEN PRODUCTION FROM WASTEWATER

  • 摘要: 氢能是未来国家能源体系的重要组成部分,是战略性新兴产业重点发展方向。开发绿色环保的制氢技术是构建国家未来氢能体系、实现“双碳”目标的重要支撑。然而,目前主流的可再生能源电解水制氢技术,对水质要求极高,需消耗大量清洁水源,存在“资源-能源”不平衡的问题。从污水中制备绿氢,可同步解决废水处理及水制氢淡水消耗两大问题,是实现污水处理过程中碳中和的理想策略。从原理、装备及工艺角度,系统综述了污水制氢技术的现状与挑战,分析了当前通过生化和膜过滤等预处理与电解相结合的工艺在污水制氢中的工程化应用。同时,重点探讨了旋流技术与污水电解制氢的创新整合路径。通过引入旋流技术,强化传质与流场控制,可实现污水电解过程中高效、低能耗的氢气产出,开创污水资源化利用与清洁能源生产的多赢局面。
  • [1] RAIYAN A, MAAN H. Deep eutectic solvents: green multi-task agents for sustainable super green hydrogen technologies[J]. Journal of Energy Chemistry, 2023: 2095-4956.
    [2] IEA. A Global Hydrogen Review 2023[R]. IEA, Paris,2023.
    [3] IEA. Global Hydrogen Review 2022[R]. OECD Publishing, 2022.
    [4] BLANK T K, MOLLY P. Hydrogen’s Decarbonization Impact for Industry. Near-term Challenges and Long-term Potential[R]. Rocky Mountain Institute, 2020.
    [5] NISHIYAMA H, YAMADA T, NAKABAYASHI M, et al. Photocatalytic solar hydrogen production from water on a 100 m2 scale[J]. Nature, 2021, 598, 7880:304-307.
    [6] XIE H, ZHAO Z, LIU T, et al. A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612(7941): 673-678.
    [7] CARTAXO M, FERNANDES. Hydrogen production via wastewater electrolysis:an integrated approach review, in modelling and implementation of complex systems[J]. Modelling and Implementation of Complex Systems, 2022: 671-680.
    [8] 李实.制氢技术的现状与发展趋势[J]. 一重技术,2024(2):72-74.
    [9] LI Y, ZHOU H, CAI S, et al. Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting[J]. Nature Catalysis, 2024, 7(1): 77-88.
    [10] IWA. Biological Wastewater Treatment[M]. IWA Publishing, 2008.
    [11] KRISHNAMOORTHY S, PREMALATHA M, VIJAYASEKARAN M. Characterization of distillery wastewater-an approach to retrofit existing effluent treatment plant operation with phycoremediation[J]. Journal of Cleaner Production, 2017, 148: 735-750.
    [12] JAIN M, MAJUMDER A, GHOSAL P S, et al. A review on treatment of petroleum refinery and petrochemical plant wastewater: a special emphasis on constructed wetlands[J]. Journal of Environmental Management, 2020, 272: 111057.
    [13] MAITI D, ANSARI I, RATHER M A, et al. Comprehensive review on wastewater discharged from the coal-related industries-characteristics and treatment strategies[J]. Water Science and Technology, 2019, 79(11): 2023-2035.
    [14] DAS P, MONDAL G C, SINGH S, et al. Effluent treatment technologies in the iron and steel industry-a state of the art review[J]. Water Environment Research, 2018, 90(5): 395-408.
    [15] POKHREL D, VIRARAGHAVAN T. Treatment of pulp and paper mill wastewater: a review[J]. Science of the Total Environment, 2004, 333(1/2/3): 37-58.
    [16] LOFRANO G, MERIÇ S, ZENGIN G E, et al. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review[J]. Science of the Total Environment, 2013, 461: 265-281.
    [17] GADIPELLY C, PÉREZ-GONZÁLEZ A, YADAV G D, et al. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11571-11592.
    [18] KHANDEGAR V, SAROHA A K. Electrocoagulation for the treatment of textile industry effluent-a review[J]. Journal of Environmental Management, 2013, 128: 949-963.
    [19] KARADAG D, KÖROǦLU O E, OZKAYA B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater[J]. Process Biochemistry, 2015, 50(2): 262-271.
    [20] LI S, ZHAO S, YAN S, et al. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2845-2856.
    [21] SHARMILA V G, BANU J R, KIM S H, et al. A review on evaluation of applied pre-treatment methods of wastewater towards sustainable H2 generation energy efficiency analysis[J]. Hydrogen Energy,2020, 45(15): 8329-8345.
    [22] ÇOKAY E, GÜRLER Y. Effects of metals in wastewater on hydrogen gas production using electrohydrolysis[J]. Hydrogen Energy,2020, 45: 3407-3413.
    [23] 郝晓地,闫颖颖,李季,等.污水处理出水电解制氢可行性分析[J]. 中国给水排水,2023,39(18):1-8.
    [24] LIU Q P, FLORES-ALSINA X, RAMIN E, et al. Aking waves: power-to-X for the water resource recovery facilities of the future[J]. Water Research, 2024,257: 121691.
    [25] IEA. Electrolysers[EB/OL]. https://www.iea.org/energy-system/low-emission-fuels/electrolysers.
    [26] 廖龙飞,李明雨,尹永利,等.碱性水电解制氢催化剂研究进展[J]. 工业催化,2023,31(2):7-17.
    [27] TÜYSÜZ H. Alkaline water electrolysis for green hydrogen production[J]. Accounts Chem Res, 2024, 57(4):558-567.
    [28] ANSAR A S, GAGO A S, RAZMJOOEI F, et al. Riedrich KA: alkaline electrolysis-status and prospects. InElectro chemical power sources: fundamentals[J]. Systems, and Applications, 2022:165-198.
    [29] CHENG H R, XIA Y H, HU Z Y, et al. Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers[J]. Applied Energy, 2024,358: 122510.
    [30] ANWAR S, KHAN F, ZHANG Y, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. Int J Hydrogen Energy, 2021,46(63):32284-32317.
    [31] SCHNEIDER L P C, DHRIOUA M, ULLMER D, et al. Advancements in hydrogen production using alkaline electrolysis systems: a short review on experimental and simulation studies[J]. Current Opinion in Electrochemistry, 2024,47: 101552.
    [32] WANG W, DING L, XIE Z, et al. Discovering reactant supply pathways at electrode PEM reaction interfaces via a tailored interface-visible characterization cell[J]. SMALL, 2023,19(28):2207809.
    [33] ZHAO P, WANG J, HE W, et al. Magnetic field Pre-polarization enhances the efficiency of alkaline water electrolysis for hydrogen production[J]. Energy Convers Manag, 2023, 283:116906.
    [34] WANG Y Q, WEN C, TU J, et al. he multi-scenario projection of cost reduction in hydrogen production by proton exchange membrane (PEM) water electrolysis in the near future (2020—2060) of China[J]. Fuel, 2023,354: 129409.
    [35] CARMO M, KEELEY GP, HOLTZ D, et al. PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling[J]. Int J Hydrogen Energy, 2019,44(7):3450-3455.
    [36] LU S, ZHAO B, CHEN M, et al. Electrolysis of waste water containing aniline to produce polyaniline and hydrogen with low energy consumption[J]. Int J Hydrogen Energy, 2020,45(43):22419-22426.
    [37] MORENO Soriano R, ROJAS N, NIETO E, et al. Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyzer: bolt torques and operation mode in pre-conditioning[J]. Int J Hydrogen Energy, 2021,46(51): 25944-25953.
    [38] CHAI S, ZHANG G, LI G, et al. Industrial hydrogen production technology and development status in China: a review[J]. Clean Techn Environ Policy, 2021,23(7): 1931-1946.
    [39] SALEHMIN MNI, HUSAINI T, GOH J, et al. High-pressure PEM water electrolyser: a review on challenges and mitigation strategies towards green and low-cost hydrogen production[J]. Energ Conver Manage, 2022,268: 15985.
    [40] JANG D, KIM J, KIM D, et al. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies[J]. Energ Conver Manage, 2022,258: 15499.
    [41] OROSA P, CHINARRO L, GUINEA E, et al. Hydrogen production by wastewater alkaline electro-oxidation[J]. Energies, 2022, 15: 5888.
    [42] ELGARAHY A M, ELOFFY M G, HAMMAD A, et al. Hydrogen production from wastewater, storage, economy, governance and applications: a review[J]. Environmental Chemistry Letters, 2022,20:3453-3504.
    [43] MERABET N H, KERBOUA K, HOINKIS J. Hydrogen production from wastewater: a comprehensive review of conventional and solar powered technologies[J]. Renewable Energy, 2024,226: 120412.
    [44] 陈书鑫,周菁清,孙琴琴,等.全光谱条件下WO3-x光催化降解甲氧苄啶[J]. 环境工程,2023,41(2):140-145

    ,172.
    [45] 庞丹丹,李洁冰,宋忠贤,等.g-C3N4光催化剂的改性优化研究进展[J]. 环境工程,2019,37(4):104-111.
    [46] ZHANG W L, LI Y, WANG C, et al. Energy recovery during advanced wastewater treatment: simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis[J]. Water Research, 2013,47(3):1480-1490.
    [47] YAGHOUBI S, MOJTABA S. MOUSAVI, et al. Photocatalysts for solar energy conversion: recent advances and environmental applications[J]. Renewable and Sustainable Energy Reviews, 2024,200: 114538.
    [48] ZHAO Y, DING C, ZHU J, et al. A Hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts[J]. Angew Chem Int Ed, 2020,59(24): 9653-9658.
    [49] LI Z, LI R, JING H, et al. Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al2O3[J]. Nat Catal, 2023,6 (1):80-88.
    [50] NISHIOKA S, OSTERLOH F E, WANG X, et al. Photocatalytic water splitting[J]. Nat Rev Methods Primers, 2023, 3(1):42.
    [51] COSTANTINO F, KAMAT P V, Do sacrificial donors donate H2 in photocatalysis?[J]. CS Energy Lett, 2022,7(1):242-246.
    [52] ZHANG X Y, CHENG Z J, BO C L, et al. The photocatalytic wastewater hydrogen production process with superior performance to the overall water splitting[J]. Colloid and Interface Science, 2025, 677: 189-197.
    [53] WEI Z D, LIU J Y, SHANG W F. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production[J]. Catalysis, 2020,41(10): 1440-1450.
    [54] PAVEL M, ANASTASESCU C, STATE R N, et al. Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of practical application potential for water and air cleaning[J]. Catalysts, 2023, 13(2):380.
    [55] WANG S, WANG Y, HE X, et al. Degradation or humification: rethinking strategies to attenuate organic pollutants[J]. Trends Biotechnol, 2022,40 (9):1061-1072.
    [56] REN Y, CHEN Y, LI Q, et al. Microwave-assisted photocatalytic degradation of organic pollutants via CNTs/TiO2[J]. Catalysts, 2022, 12 (9):940.
    [57] CHEN D, CHENG Y, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review[J]. Clean Prod, 2020,268:121725.
    [58] DURANTE C, MAZZUCATO M, BELLARDITA M, et al. Fundamentals of photoelectrocatalysis, Photo.: Fundam[J]. Appl, 2023: 7-81.
    [59] BHUNIA P, DUTTA K. Photocatalysts and Photoelectrocatalysts in fuel cells and photofuel cells[J]. 2020: 19-55.
    [60] HOSSEINZADEH N, HABIBZADEH S, HALLADJ R. A novel ternary Ti-V-Bi oxide photoelectrocatalyst in advanced oxidation process[J]. Alloy Compd, 2023, 960: 171064.
    [61] 何卓容,李贤英,魏贝贝.BiVO4/rGO涂膜电极光电催化测定水样中的COD[J]. 环境工程,2023,41(2):205-212.
    [62] DAVIES K,ALLAN M G,NAGARAJAN S, et al. Solar light-driven simultaneous pharmaceutical pollutant degradation and green hydrogen production using a mesoporous nanoscale WO3/BiVO4 heterostructure photoanode[J]. Environ Chem Eng, 2023,11 (3):110256.
    [63] KAUSHIK R, GANDHI S, HALDER A, Photoelectrochemical degradation of organic pollutants coupled with molecular hydrogen generation using Bi2O3/TiO2 nanoparticle arrays[J]. ACS Appl Nano Mater, 2023,6 (6):4297-4308.
    [64] NYIKO M Chauke, MPFUNZENI Raphulu. A review: simultaneous "one-pot" pollution mitigation and hydrogen production from industrial wastewater using photoelectrocatalysis process[J]. Materials Today Catalysis, 2024,5: 100052.
    [65] SURESH G, KUMARI P, VENKATA Mohan S. Light-dependent biohydrogen production: progress and perspectives[J]. Bioresour Technol, 2023, 380: 129007.
    [66] M M M’ARIMI, A K KIPROP, et al. Progress in applications of advanced oxidation processes for promotion of biohydrogen production by fermentation processes[J]. Biomass Convers Biorefinery, 2022, 12:6033-6057.
    [67] 杜健,任宏宇,徐翩翩,等.有机废水发酵制氢末端废液资源化利用研究进展[J]. 给水排水,2022,58(增刊2):582-592.
    [68] HITAM C N C, JALIL A A, A review on biohydrogen production through photo-fermentation of lignocellulosic biomass[J]. Biomass Convers Biorefinery, 2023,13(10):8465-8483.
    [69] MICHAEL L ADEKANBI, BASHIR E SANI, STEVE O ESHIEMOGIE, et al. Biohydrogen production from wastewater: an overview of production techniques, challenges, and economic considerations, Energy[J]. Ecol Environ, 2022: 1-28.
    [70] SAHA R, BHATTACHARYA D, MUKHOPADHYAY M. Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: a comprehensive review[J]. Energy Convers Manage, 2022,13: 100153.
    [71] WANG Q, WEI D, LUO X, et al. Ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella-based photo-fermentation with optimal light-emitting diode illumination: from laboratory to pilot plant[J]. Bioresour Technol, 2022,348: 126779.
    [72] AKHLAGHI N, G NAJAFPOUR-DARZI. A comprehensive review on biological hydrogen production[J]. Hydrogen Energy, 2020,45:22492-22512.
    [73] MOHAMMEDAWI H H Al, ZNAD H, et al. Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158[J]. Hydrogen Energy, 2018,43:15823-15834.
    [74] REN Changpeng, ZHANG Sihu, LI Qing, et al. Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: from batch to continuous operation[J]. Bioresource Technology, 2024,401: 130705.
    [75] SOARES J F, CONFORTIN T C, TODERO I, et al. Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects[J]. Renew Sustain Energy Rev, 2020,117:109484.
    [76] OSMAN A I, DEKA T J, BARUAH D C, et al. Critical challenges in biohydrogen production processes from the organic feedstocks[J]. Biomass Convers Biorefin, 2023,13(10):8383-8401.
    [77] RANI P, YADAV D K, YADAV A, et al. Frontier in dark fermentative biohydrogen production from lignocellulosic biomass: challenges and future prospects[J]. Fuel, 2024,366: 131187.
    [78] EMISHA L, PRINCE D, VIJAY S J, et al. Technological advancement in the production of biohydrogen from lignocellulosic biomass: a review[J]. Journal of Environmental Chemical Engineering, 2024,12(3): 113084.
    [79] 孙茹茹,姜霁珊,徐叶,等.暗发酵制氢代谢途径研究进展[J]. 上海师范大学学报(自然科学版),2020,49(6):614-621.
    [80] REN N, GUO W, LIU B. et al. Biological hydrogen production from organic wastewater by dark fermentation in China: overview and prospects[J]. Front. Environ Sci Eng,2009,3:375-379.
    [81] SHARMA, MEHDI S E H, PANDIT S, et al. Factors affecting hydrogen production in Reactor configurations, recent advances and strategies in biohydrogen production: a review[J]. Hydrogen Energy, 2024,61:1473-1484.
    [82] ARVIN A, HOSSEINI M, AMIN M.M, et al. Efficient methane production from petrochemical wastewater in a single membrane-less microbial electrolysis cell: the effect of the operational parameters in batch and continuous mode on bioenergy recovery[J]. Environmental Health Science and Engineering, 2019,17:305-317.
    [83] 张杰,张建,曹晓强,等.微生物电解池强化垂直潜流人工湿地硝化反硝化脱氮研究[J]. 环境工程,2023,41(6):32-37

    ,70.
    [84] ARUN J, SUNDARRAJAN P S, PAVITHRA K G, et al. New insights into microbial electrolysis cells (MEC) and microbial fuel cells (MFC) for simultaneous wastewater treatment and green fuel (hydrogen) generation[J]. Fuel, 2024,355: 129530.
    [85] GUISASOLA A, BAEZA J A, MARONE A, et al. Opportunities for hydrogen production from urban/industrial wastewater in bioelectrochemical systems[M]//Microbial Electrochemical Technologies, CRC Press, Boca Raton, 2020: 225-243.
    [86] GUERRERO-Sodric, J A BAEZA, A GUISASOLA. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant[J]. Water Research, 2024,256: 121616.
    [87] ASLAM, A BAHADAR, R LIAQUAT, et al. A novel application of Chlorella sorokiniana for green hydrogen production via microbial electrolysis and Waste Biorefinery[J]. Process Safety and Environmental Protection, 2024,189:164-176.
    [88] ROUSSEAU R, ETCHEVERRY L, ROUBAUD E, et al. Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint[J]. Appl Energy, 2020,257:113938.
    [89] RATHI B S, KUMAR P S, RANGASAMY G, et al. A critical review on Biohydrogen generation from biomass[J]. International Jounral of Hydrogen Energy, 2024,52:115-138.
    [90] SHARMA A K, GHODKE P K, MANNA S, et al. Emerging technologies for sustainable production of biohydrogen production from microalgae: a state-of-the-art review of upstream and downstream processes[J]. Bioresource Technology, 2021,42: 126057.
    [91] LU C Y, WANG G T, ZHANG Q G, et al. Comparison of biorefinery characteristics: photo-fermentation biohydrogen, dark fermentation biohydrogen, biomethane, and bioethanol production[J]. Applied Energy, 2023,347: 121463.
    [92] 祝嘉禄,白海梅,夏四清.合流制大型污水处理厂全流程工艺建模模拟实践[J]. 净水技术,2024,43(增刊1):184-191.
    [93] XU B, ZHANG Q, WU H H, et al. Integrated membrane process of tubular ultrafiltration-nanofiltration-electrodialysis-reverse osmosis for treating fracturing flowback fluid[J]. Cleaner Production, 2024,469:142995.
    [94] CHEN J Q, WANG L, MA S H, et al. Separation of fine waste catalyst particles from methanol-to-olefin quench water via swirl regenerating micro-channel separation (SRMS): a pilot-scale study[J]. Process Safety and Environmental Protection, 2021, 152: 108-116.
    [95] MA H P, LI J P, HU X P, et al. On-site source-separation of microparticles and reuse of coal gasification wastewater via a micro-channel separator: performance and separation mechanism[J]. Separation and Purification Technology, 2024,341:126565.
    [96] CHEN F, HUANG H, GUO L, et al. The role of polarization in photocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(30):10061-10073.
    [97] WANG Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics[J]. Nano Today, 2010, 5(6):540-552.
    [98] TU S, GUO Y, ZHANG Y, et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application[J]. Advanced Functional Materials, 2020,30(48): 2005158.
    [99] LIU W, FU P, ZHANG Y, et al. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes[J]. Proceedings of the National Academy of Sciences, 2023,120(7):e2218813120.
    [100] LIU B, MANICA R, LIU Q, et al. Nanoscale transport during liquid film thinning inhibits bubble coalescing behavior in electrolyte solutions[J]. Physical Review Letters, 2023, 131(10): 104003.
    [101] XU Xiao, WANG Shuo, YANG Q. Performance of a degassing cyclone with main and subsidiary chambers[J]. Chemical Engineering & Technology, 2022,45(1):34-42.
    [102] CHEN Z, MENG C, RUAN H, et al. Removal of bubbles from electrodes in a planar cyclonic electrolyzer[J/OL]. Chemical Engineering and Processing-Process Intensification, 2022.DOI: 10.1016/j.cep.2022.109133.
    [103] LU Hao, PAN Zhicheng, WANG Hualin, et al. Fiber coalescence treatment of oily wastewater: a new theory and application[J]. Journal of Hazardous Materials, 2021(36): 125188.
  • 加载中
计量
  • 文章访问数:  48
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回