HIGHLY SELECTIVE NANOFILTRATION SEPARATION TECHNOLOGY FACILITATES RESOURCE EXTRACTION AND RECOVERY FROM HIGH SALINITY ENVIRONMENTS
-
摘要: 在低碳目标和循环经济框架下,资源回收与提取得到广泛关注。高盐废水中蕴藏着丰富的资源,直接排放会造成环境污染和资源浪费。围绕纳滤膜在高盐环境中资源回收与提取的应用前景,梳理了近年来离子选择性纳滤技术的发展趋势。总结了纳滤膜空间位阻效应、道南效应、介电排斥效应和溶质脱水合及溶质-膜材料弱相互作用等对溶质分离的作用机理,论述了纳滤技术的分离因子、纯度、回收率和渗透率等评价指标的意义及其对纳滤膜性能的要求。此外,选取了海水资源提取、工业废水零排放、盐湖提锂和电镀废水处理4种具有代表性的高盐环境,介绍了目前纳滤膜的应用现状和发展方向。最后,从资源回收的角度,以回收率和纯度作为标准,分析了水渗透性和分离选择性的优化方法,为面向高盐环境资源提取的高选择性纳滤膜定制设计提供建议。Abstract: Within the ambit of low-carbon objectives and the circular economy paradigm, resource recovery and extraction have received wide attention. High-salinity wastewater, as a trove of untapped resources, poses a dual challenge: the direct emissions of high salinity wastewater lead to environmental pollution, and squander valuable resources. This review delves into the application of nanofiltration (NF) membranes in resource recovery and extraction from high salinity environments, meticulously tracing the recent advancements in ion-selective NF separation technologies. Firstly, we consolidate the solute separation mechanisms of NF membranes, encompassing steric effect, Donnan exclusion, dielectric exclusion effects, and transition state theory. Subsequently, we delve into the evaluation metrics essential for assessing NF membrane performance, including separation factor, purity, recovery rate, and solute permeability. Furthermore, we highlight four exemplary high-salinity scenarios, seawater resource extraction, zero discharge of industrial wastewater, lithium extraction from brines, and electroplating wastewater treatment, where NF membranes have demonstrated promising applications and ongoing developments. These cases illustrate the versatility and potential of NF technologies in addressing diverse resource recovery challenges. Lastly, from a resource recovery perspective, we dissect optimization strategies aiming at enhancing water permeability and separation selectivity. These insights offer valuable guidance for the customization of highly selective NF membranes, tailoring them to meet the unique demands of various high-salinity environments. This review contributes to advancing the frontier of NF membrane technology and fostering sustainable resource management practices.
-
[1] CARRARD N. Reorienting water and sanitation narratives towards sustainability transformations[J]. Nat Wat, 2024, 2(1): 2-3. [2] ZHAO Y, TONG T, WANG X, et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review[J]. Environmental Science & Technology, 2021, 55(3): 1359-1376. [3] MORGANTE C, LOPEZ J, CORTINA J L, et al. New generation of commercial nanofiltration membranes for seawater/brine mining: experimental evaluation and modelling of membrane selectivity for major and trace elements[J]. Separation and Purification Technology, 2024, 340: 126758. [4] WANG R, HE R, HE T, et al. Performance metrics for nanofiltration-based selective separation for resource extraction and recovery[J]. Nat Wat, 2023, 1(3): 291-300. [5] 刘天媛. 以分盐为目标的煤化工园区浓盐水资源化处理工艺研究[D]. 北京: 清华大学, 2022. [6] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. [7] EPSZTEIN R, DUCHANOIS R M, RITT C L, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6): 426-436. [8] LIU W, ZHAO C, ZHOU S, et al. Effects of UV/Fe(Ⅱ)/sulfite pre-treatment on NOM-enhanced Ca2+ scaling during nanofiltration treatment: fouling mitigation, mechanisms, and correlation analysis of membrane resistance[J]. Water Research, 2022, 223: 119025. [9] BANDINI S, VEZZANI D. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization[J]. Chemical Engineering Science, 2003, 58(15): 3303-3326. [10] 王智. 纳滤截留无机离子特性及机理研究[D]. 北京: 清华大学, 2018. [11] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5): 1-15. [12] OATLEY D L, LLENAS L, PÉREZ R, et al. Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation[J]. Advances in Colloid and Interface Science, 2012, 173: 1-11. [13] YAROSHCHUK A E. Dielectric exclusion of ions from membranes[J]. Advances in Colloid and Interface Science, 2000, 85(2/3): 193-230. [14] GUO H Y, GAO X Q, YU K C, et al. Ion adsorption on nanofiltration membrane surface and its effect on rejection of charged solutes: a zeta potential approach[J]. Separation and Purification Technology, 2023, 326. [15] GAO Y, WANG K, WANG X M, et al. Exploitation of amine groups cooped up in polyamide nanofiltration membranes to achieve high rejection of micropollutants and high permeance of divalent cations[J]. Environmental Science & Technology, 2022, 56(15): 10954-10962. [16] PENG Q, WANG R, ZHAO Z, et al. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane[J]. Nature Communications, 2024, 15(1): 2505. [17] LU D, YAO Z, JIAO L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, 2: 100032. [18] EPSZTEIN R, SHAULSKY E, DIZGE N, et al. Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration[J]. Environmental Science & Technology, 2018, 52(7): 4108-4116. [19] DUCHANOIS R M, HEIRANIAN M, YANG J, et al. Designing polymeric membranes with coordination chemistry for high-precision ion separations[J]. Science Advances, 2022, 8(9): 9436. [20] WARNOCK S J, SUJANANI R, ZOFCHAK E S, et al. Engineering Li/Na selectivity in 12-Crown-4-functionalized polymer membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2022197118. [21] SIGURDARDOTTIR S B, DUCHANOIS R M, EPSZTEIN R, et al. Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: role of intra-pore diffusion[J]. Journal of Membrane Science, 2020, 603: 117921. [22] ZHOU X, WANG Z, EPSZTEIN R, et al. Intrapore energy barriers govern ion transport and selectivity of desalination membranes[J]. Science Advances, 2020, 6(48): eabd9045. [23] SHEN Q, XU S J, XU Z L, et al. Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution[J]. J Appl Polym Sci, 2019, 136(41): 48029. [24] WANG R, ZHANG J, TANG C Y, et al. Understanding selectivity in solute-solute separation: definitions, measurements, and comparability[J]. Environmental Science & Technology, 2022, 56(4): 2605-2616. [25] PEER-HAIM O, SHEFER I, SINGH P, et al. The adverse effect of concentration polarization on ion-ion selectivity in nanofiltration[J]. Environmental Science & Technology Letters, 2023, 10(4): 363-371. [26] XUERUI G, PING L, YUAN Q, et al. Negative rejection phenomenon in the mixed salt nanofiltration: law and mechanism[J]. Desalination, 2024, 583: 117667. [27] ZHANG T, HE Z H, WANG K P, et al. Loose nanofiltration membranes for selective rejection of natural organic matter and mineral salts in drinking water treatment[J]. Journal of Membrane Science, 2022, 662: 120970. [28] YAROSHCHUK A, BRUENING M L. An analytical solution of the solution-diffusion-electromigration equations reproduces trends in ion rejections during nanofiltration of mixed electrolytes[J]. Journal of Membrane Science, 2017, 523: 361-372. [29] FIGUEIRA M, RODRÍGUEZ-JIMÉNEZ D, LÓPEZ J, et al. Experimental and economic evaluation of nanofiltration as a pre-treatment for added-value elements recovery from seawater desalination brines[J]. Desalination, 2023, 549: 116321. [30] MORGANTE C, LOPEZ J, CORTINA J, et al. New generation of commercial nanofiltration membranes for seawater/brine mining: experimental evaluation and modelling of membrane selectivity for major and trace elements[J]. Separation and Purification Technology, 2024, 340: 126758. [31] SHAHMANSOURI A, MIN J, JIN L, et al. Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review[J]. Journal of Cleaner Production, 2015, 100: 4-16. [32] 裴洪昌, 岳茂文, 刘建路, 等. 海水综合开发与高效利用研究进展[J]. 无机盐工业, 2024, 56(2): 21-29. [33] TRUONG V H, CHONG T H. Development of a diafiltration-nanofiltration-reverse osmosis (DiaNF-RO) process for ion fractionation towards resource recovery in seawater desalination[J]. Desalination, 2024, 583: 117684. [34] DU F, WARSINGER D M, URMI T I, et al. Sodium hydroxide production from seawater desalination brine: process design and energy efficiency[J]. Environmental Science & Technology, 2018, 52(10): 5949-5458. [35] KUMAR A, NAIDU G, FUKUDA H, et al. Metals recovery from seawater desalination brines technologies, opportunities, and challenges[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(23): 7704-7712. [36] HONG S, DI VINCENZO M, TIRAFERRI A, et al. Precision ion separation via self-assembled channels[J]. Nature Communications, 2024, 15(1): 3160. [37] MESHRAM P, PANDEY B, MANKHAND T. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. [38] WANG K, WANG X, JANUSZEWSKI B, et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships[J]. Chemical Society Reviews, 2022, 51(2): 672-719. [39] 赛世杰. 纳滤膜在高盐废水零排放领域的分盐性能研究[J]. 工业水处理, 2017, 37(9): 75-78. [40] WANG Q, WANG Y, CHEN B Z, et al. Designing high-performance nanofiltration membranes for high-salinity separation of sulfate and chloride in the chlor-alkali process[J]. Ind Eng Chem Res, 2019, 58(27): 12280-12290. [41] SARKAR P, MODAK S, KARAN S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration[J]. Adv Funct Mater, 2021, 31(3): 2007054. [42] YAN Z Q, ZENG L M, LI Q, et al. Selective separation of chloride and sulfate by nanofiltration for high saline wastewater recycling[J]. Separation and Purification Technology, 2016, 166: 135-141. [43] KHALIL A, MOHAMMED S, HASHAIKEH R, et al. Lithium recovery from brine: recent developments and challenges[J]. Desalination, 2022, 528: 115611. [44] SONG J F, NGHIEM L D, LI X M, et al. Lithium extraction from Chinese salt-lake brines opportunities, challenges, and future outlook[J]. Environmental Science: Water Research & Technology, 2017, 3(4): 593-597. [45] ZHANG H Z, XU Z L, DING H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+[J]. Desalination, 2017, 420: 158-166. [46] YANG Z, FANG W, WANG Z, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. Journal of Membrane Science, 2021, 620: 118862. [47] PENG H, ZHAO Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Adv Funct Mater, 2021, 31(14): 2009430. [48] 刘彦伶, 李天玉, 王小, 等. 高压膜表面性质对膜污染的影响机制[J]. 环境工程, 2021, 39(7): 46-53. [49] 董守龙, 杨尚明, 张世春, 等. 纳滤和反渗透组合回收盐湖提锂尾液中锂的研究[J]. 无机盐工业, 2019, 51(12): 53-57. [50] WANG R, ALGHANAYEM R, LIN S. Multipass nanofiltration for lithium separation with high selectivity and recovery[J]. Environmental Science & Technology, 2023, 57(38): 14464-14471. [51] 赵皓月, 吴欢欢, 姚宏, 等. 膜技术在回收电镀废水中金属离子的应用研究进展[J]. 水处理技术, 2022, 48(2): 6-12. [52] GAO J, SUN S P, ZHU W P, et al. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal[J]. Water Research, 2014, 63: 252-261. [53] ZHU W P, GAO J, SUN S P, et al. Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal[J]. Journal of Membrane Science, 2015, 487: 117-126. [54] HE Y R, LIU J T, HAN G, et al. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal[J]. Journal of Membrane Science, 2018, 555: 299-306. [55] WANG C, SUN M, WANG X Z, et al. Enhanced resource recovery from wastewater using electrochemical-osmotic system with nanofiltration membranes[J]. Resources Conservation and Recycling, 2022, 186. [56] WOLTERS R, WENDLER B, SCHMIDT B, et al. Rinsing water recovery in the steel industry-a combined UF/NF treatment[J]. Desalination, 2008, 224(1/2/3): 209-214. [57] JIN Y, SU Z. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films[J]. Journal of Membrane Science, 2009, 330(1/2): 175-179. [58] GAO Y, ZHAO Y, WANG X M, et al. Modulating the asymmetry of the active layer in pursuit of nanofiltration selectivity via differentiating interfacial reactions of piperazine[J]. Environmental Science & Technology, 2022, 56(19): 14038-14047. [59] ZHAO Y, ZHANG Z, DAI L, et al. Preparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)2 group [J]. Desalination, 2018, 431: 56-65. [60] WANG H, ZHANG Q, ZHANG S. Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3',5,5'-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support [J]. Journal of Membrane Science, 2011, 378(1/2): 243-249. [61] LI W, SHI C, ZHOU A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. [62] LI Y, SU Y, DONG Y, et al. Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers[J]. Desalination, 2014, 333(1): 59-65. [63] LIANG Y, ZHU Y, LIU C, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation[J]. Nature Communications, 2020, 11(1): 2015. [64] LIU Y L, ZHAO Y Y, WANG X M, et al. Effect of varying piperazine concentration and post-modification on prepared nanofiltration membranes in selectively rejecting organic micropollutants and salts[J]. Journal of Membrane Science, 2019, 582: 274-283. [65] YUAN B, JIANG C, LI P, et al. Ultrathin polyamide membrane with decreased porosity designed for outstanding water-softening performance and superior antifouling properties[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 43057-43067. [66] GEISE G M, PAUL D R, FREEMAN B D. Fundamental water and salt transport properties of polymeric materials[J]. Progress in Polymer Science, 2014, 39(1): 1-42. [67] WU M, YUAN J, WU H, et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability[J]. Journal of Membrane Science, 2019, 576: 131-141. [68] JIANG C, ZHANG L, LI P, et al. Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25304-25315. [69] RITT C L, WERBER J R, DESHMUKH A, et al. Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity[J]. Environmental Science & Technology, 2019, 53(11): 6214-6224. [70] SHANG W, SUN F, JIA W, et al. High-performance nanofiltration membrane structured with enhanced stripe nano-morphology[J]. Journal of Membrane Science, 2020, 600: 117852. [71] TENG X X, FANG W X, LIANG Y Z, et al. High-performance polyamide nanofiltration membrane with arch-bridge structure on a highly hydrated cellulose nanofiber support[J]. Science China Materials, 2020,63(12):1-12. [72] JIANG C, TIAN L, ZHAI Z, et al. Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration[J]. Journal of Membrane Science, 2019, 589: 117244. [73] SHANG C, PRANANTYO D, ZHANG S. Understanding the roughness-fouling relationship in reverse osmosis: mechanism and implications[J]. Environmental Science & Technology, 2020, 54(8): 5288-5296. [74] WANG K, FU W, WANG X M, et al. Molecular design of the polyamide layer structure of nanofiltration membranes by sacrificing hydrolyzable groups toward enhanced separation performance[J]. Environmental Science & Technology, 2022, 56(24): 17955-17964. [75] JIANG C, TIAN L, HOU Y, et al. Nanofiltration membranes with enhanced microporosity and inner-pore interconnectivity for water treatment: excellent balance between permeability and selectivity[J]. Journal of Membrane Science, 2019, 586: 192-201. [76] PENG H, ZHANG W H, HUNG W S, et al. Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness[J]. Adv Mater, 2020, 32(23): 2001383. [77] DUCHANOIS R M, COOPER N J, LEE B, et al. Prospects of metal recovery from wastewater and brine[J]. Nat Wat, 2023, 1(1): 37-46. [78] 徐雨晴, 巫寅虎, 吴乾元, 等. 半导体行业废水的反渗透膜污堵机制与控制策略[J]. 环境科学研究, 2023, 36(3): 535-545.
点击查看大图
计量
- 文章访问数: 57
- HTML全文浏览量: 13
- PDF下载量: 1
- 被引次数: 0