中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学阻抗谱技术表征纳滤和反渗透膜污染及膜传质过程研究与应用进展

孔琬婷 李雪松 王志伟

孔琬婷, 李雪松, 王志伟. 电化学阻抗谱技术表征纳滤和反渗透膜污染及膜传质过程研究与应用进展[J]. 环境工程, 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005
引用本文: 孔琬婷, 李雪松, 王志伟. 电化学阻抗谱技术表征纳滤和反渗透膜污染及膜传质过程研究与应用进展[J]. 环境工程, 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005
KONG Wanting, LI Xuesong, WANG Zhiwei. RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005
Citation: KONG Wanting, LI Xuesong, WANG Zhiwei. RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005

电化学阻抗谱技术表征纳滤和反渗透膜污染及膜传质过程研究与应用进展

doi: 10.13205/j.hjgc.202409005
基金项目: 

国家自然科学基金项目“污水处理与资源化”(51925806)

详细信息
    作者简介:

    孔琬婷(2000-),女,硕士研究生,主要研究方向为膜传质过程的电化学表征。wtkong@tongji.edu.cn

    通讯作者:

    王志伟(1980-),男,教授,博士生导师,主要研究方向为膜法污水处理与资源化技术。zwwang@tongji.edu.cn

RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES

  • 摘要: 近年来,纳滤(NF)和反渗透(RO)技术在饮用水净化、污水处理及脱盐等领域得到了广泛应用。然而,膜污染和低传质分离效率是制约NF/RO技术发展的主要挑战。解决这些问题需要借助灵敏、精确的表征分析技术深入解析其内在机制,电化学阻抗谱(electrochemical impedance spectroscopy,EIS)作为一种高灵敏的分析检测技术,能够实现实时、原位表征,在膜污染和膜分离传质过程研究中展现出独特的优势。系统综述了EIS技术在表征分析NF/RO膜污染和传质过程中的研究与应用进展,介绍了EIS的工作原理、等效电路模型,总结了其在膜污染类型识别、膜污染在线监测以及膜分离传质过程表征等方面的研究动态,最后讨论了EIS在膜分离领域应用中存在的局限性,并展望了EIS技术的未来发展方向。
  • [1] 王志伟,戴若彬,张星冉,等. 膜法污水处理技术研究应用动态与未来可持续发展思考[J]. 土木与环境工程学报, 2022, 44(3): 86-103.
    [2] MA B, ULBRICHT M, HU C, et al. Membrane life cycle management: an exciting opportunity for advancing the sustainability features of membrane separations[J]. Environmental Science & Technology, 2023, 57(8): 3013-3020.
    [3] GAO Y, QIN J, WANG Z, et al. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: a review[J]. Journal of Membrane Science, 2019, 587: 117136.
    [4] WANG Z, MA J, TANG C Y, et al. Membrane cleaning in membrane bioreactors: a review[J]. Journal of Membrane Science, 2014, 468: 276-307.
    [5] AN X, ZHANG K, WANG Z, et al. Improving the water permeability and antifouling property of the nanofiltration membrane grafted with hyperbranched polyglycerol[J]. Journal of Membrane Science, 2020, 612(0): 118417.
    [6] LI WANG T C, KEVIN E P, MASASHI K, et al. Significance of co-ion partitioning in salt transport through polyamide reverse osmosis membranes[J]. Environmental science & technology, 2023, 57(9): 3930-3939.
    [7] ZHANG C, BAO Q, WU H, et al. Impact of polysaccharide and protein interactions on membrane fouling: particle deposition and layer formation[J]. Chemosphere, 2022, 296: 134056.
    [8] WEI Y, HUNG H C, SUN F, et al. Achieving low-fouling surfaces with oppositely charged polysaccharides via LBL assembly[J]. Acta Biomater, 2016, 40: 16-22.
    [9] MAIRAL A P, GREENBERG A R, KRANTZ W B, et al. Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry[J]. Journal of Membrane Science, 1999, 159(1): 185-196.
    [10] LI X, ZHANG H, HOU Y, et al. In situ investigation of combined organic and colloidal fouling for nanofiltration membrane using ultrasonic time domain reflectometry[J]. Desalination, 2015, 362: 43-51.
    [11] 郭雲,李胄彦,王志伟. 电化学膜分离技术在水处理领域的研究进展[J]. 环境工程, 2022, 40(12): 253-269.
    [12] STOLOV M, FREGER V. Ion transport and specificity in polyamide membranes studied by conductivity and its activation energy[J]. Journal of Membrane Science, 2023, 678(0): 121616.
    [13] ZHAI X H, DAI R B, LI X S, et al. Roles of anion-cation coupling transport and dehydration-induced ion-membrane interaction in precise separation of ions by nanofiltration membranes[J]. Environmental Science & Technology, 2022, 56(19): 14069-14079.
    [14] 曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社,2016.
    [15] 马克·欧瑞姆,伯纳德·特瑞博勒特作. 电化学阻抗谱[M]. 2版. 雍兴跃译. 北京:化学工业出版社,2022.
    [16] PAJKOSSY T, JURCZAKOWSKI R. Electrochemical impedance spectroscopy in interfacial studies[J]. Current Opinion in Electrochemistry, 2017, 1(1): 53-58.
    [17] GOH G L, TAY M F, LEE J M, et al. Potential of printed electrodes for electrochemical impedance spectroscopy (EIS): toward membrane fouling detection[J]. Advanced Electronic Materials, 2021, 7(10): 2100043.
    [18] CHILCOTT T C, COSTER H G L, GEORGE E P. A novel method for the characterization of the double fixed charge (bipolar) membrane using impedance spectroscopy[J]. Journal of Membrane Science, 1995, 108(1): 185-197.
    [19] LASIA B A. Electrochemical Impedance Spectroscopy and its Applications[M]. Springer, New York, 2014.
    [20] 马洪运,范永生,洪为臣,等. 液流电池理论与技术: 电化学阻抗谱技术原理和应用[J]. 储能科学与技术, 2014, 5: 544-549.
    [21] MEI B A, MUNTESHARI O, LAU J, et al. Physical interpretations of nyquist plots for EDLC electrodes and devices[J]. The Journal of Physical Chemistry C, 2018, 122(1): 194-206.
    [22] POTOTSKAYA V V, GICHAN O I. The Gerischer finite length impedance: a case of unequal diffusion coefficients[J]. Journal of Electroanalytical Chemistry, 2019, 852: 113511.
    [23] FREGER V, BASON S. Characterization of ion transport in thin films using electrochemical impedance spectroscopy: I. principles and theory[J]. Journal of Membrane Science, 2007, 302(1): 1-9.
    [24] YEO S Y, WANG Y, CHILCOTT T, et al. Characterizing nanostructure functionality of a cellulose triacetate forward osmosis membrane using electrical impedance spectroscopy[J]. Journal of Membrane Science, 2014, 467: 292-302.
    [25] ZHAO Y J, WU K F, WANG Z J, et al. Fouling and cleaning of membrane-a literature review[J]. Journal of Environmental Sciences (China) English Ed, 2000, 12(2): 241-251.
    [26] WANG Q, WANG Z, WU Z, et al. Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces[J]. Chemical Engineering Journal, 2012, 179: 169-177.
    [27] VAN DEN BRINK P, VERGELDT F, VAN AS H, et al. The potential of mechanical cleaning of membranes from a membrane bioreactor[J]. Journal of Membrane Science, 2013, 429: 259-67.
    [28] GIRALDO E, LECHEVALLIER M. Dynamic mathematical modeling of membrane fouling in submerged membrane bioreactors[J]. Proceedings of the Water Environment Federation, 2006, 2006: 4895-4913.
    [29] EL RAYESS Y, ALBASI C, BACCHIN P, et al. Analysis of membrane fouling during cross-flow microfiltration of wine[J]. Innovative Food Science & Emerging Technologies, 2012, 16: 398-408.
    [30] MENG F, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512.
    [31] WANG X M, WAITE T D. Role of gelling soluble and colloidal microbial products in membrane fouling[J]. Environmental Science & Technology, 2009, 43(24): 9341-9347.
    [32] MA J, WANG Z, YANG Y, et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing[J]. Water Research, 2013, 47(2): 859-869.
    [33] MALAEB L, LE-CLECH P, VROUWENVELDER J S, et al. Do biological-based strategies hold promise for biofouling control in MBRs?[J]. Water Research, 2013, 47(15): 5447-5463.
    [34] HO J S, SIM L N, WEBSTER R D, et al. Monitoring fouling behavior of reverse osmosis membranes using electrical impedance spectroscopy: a field trial study[J]. Desalination, 2017, 407: 75-84.
    [35] CHEN J C, LI Q, ELIMELECH M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration[J]. Advances in Colloid and Interface Science, 2004, 107(2): 83-108.
    [36] JING Y, CHAPLIN B P. Electrochemical impedance spectroscopy study of membrane fouling characterization at a conductive sub-stoichiometric TiO2 reactive electrochemical membrane: transmission line model development[J]. Journal of Membrane Science, 2016, 511: 238-249.
    [37] ANTONY A, CHILCOTT T, COSTER H, et al. In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy[J]. Journal of Membrane Science, 2013, 425-426: 89-97.
    [38] XU Y, WANG M, MA Z, et al. Electrochemical impedance spectroscopy analysis of sulfonated polyethersulfone nanofiltration membrane[J]. Desalination, 2011, 271(1): 29-33.
    [39] LASIA A. Modeling of Impedance of Porous Electrodes[M]. Springer, New York, 2009: 67-137.
    [40] CHILCOTT T C, CHAN M Y, GAEDT L P, et al. Electrical impedance spectroscopy characterization of conducting membranes I. theory[J]. Journal of Membrane Science, 2002, 195: 153-167.
    [41] GAEDT L, CHILCOTT T C, CHAN M, et al. Electrical impedance spectroscopy characterization of conducting membranes: II. experimental[J]. Journal of Membrane Science, 2002, 195(2): 169-180.
    [42] COSTER H G L, CHILCOTT T C, COSTER A C F. Impedance spectroscopy of interfaces, membranes and ultrastructures[J]. Bioelectrochemistry and Bioenergetics, 1996, 40: 79-98.
    [43] KAVANAGH J M, HUSSAIN S, CHILCOTT T C, et al. Fouling of reverse osmosis membranes using electrical impedance spectroscopy: measurements and simulations[J]. Desalination, 2009, 236(1): 187-193.
    [44] CEN J, KAVANAGH J, COSTER H, et al. Fouling of reverse osmosis membranes by cane molasses fermentation wastewater: detection by electrical impedance spectroscopy techniques[J]. Desalination and Water Treatment-DESALIN WATER TREAT, 2012, 51: 1-7.
    [45] AHMED F, LALIA B S, KOCHKODAN V, et al. Electrically conductive polymeric membranes for fouling prevention and detection: a review[J]. Desalination, 2016, 391: 1-15.
    [46] NICKERSON T R, ANTONIO E N, MCNALLY D P, et al. Unlocking the potential of polymeric desalination membranes by understanding molecular-level interactions and transport mechanisms[J]. Chemical Science, 2023, 14(4): 751-770.
    [47] ANTONY A, CHILCOTT T, COSTER H, et al. Real time, in-situ monitoring of surface and structural properties of thin film polymeric membranes using electrical impedance spectroscopy[J]. Procedia Engineering, 2012, 44: 1412-1414.
    [48] HO J S, SIM L N, GU J, et al. A threshold flux phenomenon for colloidal fouling in reverse osmosis characterized by transmembrane pressure and electrical impedance spectroscopy[J]. Journal of Membrane Science, 2016, 500: 55-65.
    [49] HO J S, LOW J H, SIM L N, et al. In-situ monitoring of biofouling on reverse osmosis membranes: detection and mechanistic study using electrical impedance spectroscopy[J]. Journal of Membrane Science, 2016, 518: 229-242.
    [50] SIM L N, GU J, COSTER H G L, et al. Quantitative determination of the electrical properties of RO membranes during fouling and cleaning processes using electrical impedance spectroscopy[J]. Desalination, 2016, 379: 126-136.
    [51] CEN J, VUKAS M, BARTON G, et al. Real time fouling monitoring with Electrical Impedance Spectroscopy[J]. Journal of Membrane Science, 2015, 484: 133-9.
    [52] SIM L N, WANG Z J, GU J, et al. Detection of reverse osmosis membrane fouling with silica, bovine serum albumin and their mixture using in-situ electrical impedance spectroscopy[J]. Journal of Membrane Science, 2013, 443: 45-53.
    [53] CHONG T H, WONG F S, FANE A G. Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: experimental observations[J]. Journal of Membrane Science, 2008, 314(1): 101-111.
    [54] HOEK E M V, KIM A S, ELIMELECH M. Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations[J]. Environmental Engineering Science, 2002, 19(6): 357-372.
    [55] LU Y C, CHUANG Y S, CHEN Y Y, et al. Bacteria detection utilizing electrical conductivity[J]. Biosensors and Bioelectronics, 2008, 23(12): 1856-1861.
    [56] MATIN A, KHAN Z, ZAIDI S M J, et al. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention[J]. Desalination, 2011, 281: 1-16.
    [57] CAÑAS A, ARIZA M J, BENAVENTE J. Characterization of active and porous sublayers of a composite reverse osmosis membrane by impedance spectroscopy, streaming and membrane potentials, salt diffusion and X-ray photoelectron spectroscopy measurements[J]. Journal of Membrane Science, 2001, 183(1): 135-146.
    [58] CAÑAS A, BENAVENTE J. Electrochemical characterization of an asymmetric nanofiltration membrane with NaCl and KCl solutions: influence of membrane asymmetry on transport parameters[J]. Journal of Colloid and Interface Science, 2002, 246(2): 328-334.
    [59] BASON S, OREN Y, FREGER V. Characterization of ion transport in thin films using electrochemical impedance spectroscopy: II: examination of the polyamide layer of RO membranes[J]. Journal of Membrane Science, 2007, 302(1): 10-19.
    [60] YIN C, WANG S, ZHANG Y, et al. Correlation between the pore resistance and water flux of the cellulose acetate membrane[J]. Environmental Science: Water Research & Technology, 2017, 3(6): 1037-1041.
    [61] MONTALVILLO M, SILVA V, PALACIO L, et al. Charge and dielectric characterization of nanofiltration membranes by impedance spectroscopy[J]. Journal of Membrane Science, 2014, 454: 163-173.
    [62] EFLIGENIR A, FIEVET P, DéON S, et al. Characterization of the isolated active layer of a NF membrane by electrochemical impedance spectroscopy[J]. Journal of Membrane Science, 2015, 477: 172-182.
    [63] STOLOV M, FREGER V. Membrane charge weakly affects ion transport in reverse osmosis[J]. Environmental Science & Technology Letters, 2020, 7(6): 440-445.
    [64] SHANG W J, WANG X L, YU Y X. Theoretical calculation on the membrane potential of charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions[J]. Journal of Membrane Science, 2006, 285(1): 362-375.
    [65] ZHU H, SZYMCZYK A, GHOUFI A. Multiscale modelling of transport in polymer-based reverse-osmosis/nanofiltration membranes: present and future[J]. Discover Nano, 2024, 19(1): 91-112.
    [66] SUN F, LI K, LI N, et al. Exploring mass transfer mechanisms in reverse osmosis membranes: a comparative study of SDM and DSPM-DE models[J]. Desalination, 2024, 586: 117833.
    [67] BASON S, OREN Y, FREGER V. Ion transport in the polyamide layer of RO membranes: composite membranes and free-standing films[J]. Journal of Membrane Science, 2011, 367(1): 119-126.
    [68] SHAFFER D L, FELDMAN K E, CHAN E P, et al. Characterizing salt permeability in polyamide desalination membranes using electrochemical impedance spectroscopy[J]. Journal of Membrane Science, 2019, 583: 248-257.
    [69] LIANG Y, GAO F, WANG L, et al. In-situ monitoring of polyelectrolytes adsorption kinetics by electrochemical impedance spectroscopy: application in fabricating nanofiltration membranes via layer-by-layer deposition[J]. Journal of Membrane Science, 2021, 619: 118747.
    [70] FRIDMAN-BISHOP N, FREGER V. What makes aromatic polyamide membranes superior: new insights into ion transport and membrane structure[J]. Journal of Membrane Science, 2017, 540: 120-128.
    [71] DRAZEVIC E, BASON S, KOSUTIC K, et al. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes[J]. Environmental Science & Technology, 2012, 46(6): 3377-3383.
    [72] FRIDMAN-BISHOP N, FREGER V. When salt-rejecting polymers meet protons: an electrochemical impedance spectroscopy investigation[J]. Langmuir, 2017, 33(6): 1391-1397.
    [73] LONG M, YANG L, WU T, et al. A sub-10 nm polyamide nanofiltration membrane from polyvinylpyrrolidone-mediated interfacial polymerization[J]. Journal of Membrane Science, 2024, 700: 122729.
    [74] KARAN S, JIANG Z, LIVINGSTON A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351.
    [75] HUANG Q, LUO Q, CHEN Z, et al. The effect of electrolyte concentration on electrochemical impedance for evaluating polysulfone membranes[J]. Environmental Science: Water Research & Technology, 2018, 4(8): 1145-1151.
    [76] STOLOV M, FREGER V. Ion transport and specificity in polyamide membranes studied by conductivity and its activation energy[J]. Journal of Membrane Science, 2023, 678: 121616.
    [77] ROMERO V, VÁZQUEZ M I, BENAVENTE J. Study of ionic and diffusive transport through a regenerated cellulose nanoporous membrane[J]. Journal of Membrane Science, 2013, 433: 152-159.
    [78] SHIRSATH A V, RAËL S, BONNET C, et al. Electrochemical pressure impedance spectroscopy for investigation of mass transfer in polymer electrolyte membrane fuel cells[J]. Current Opinion in Electrochemistry, 2020, 20: 82-87.
    [79] 王芸. 电化学阻抗谱在复合材料结构和性能研究中的应用[D]. 武汉:华中科技大学, 2011.
    [80] EPSZTEIN R, DUCHANOIS R M, RITT C L, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6): 426-436.
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-04
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回