EFFICIENCIES OF DIFFERENT MAGNESIUM SOURCES IN STRUVITE FORMATION FROM IRON PHOSPHATE WASTEWATER
-
摘要: 采用正交试验和单因素优化的方法,以海水、盐卤和工业氧化镁替代传统商业镁源,对磷酸铁废水中的磷生成鸟粪石(Struvite)的不同效能、鸟粪石的组分、影响因素及其条件的优化进行了比较分析。结果表明:以海水为镁源,在最佳反应pH=10、n(Mg)/n(P)=1.2、搅拌速度=200 r/min、反应时间=20 min时磷的去除率为93.2%,生成的鸟粪石纯度和产量分别为76.8%和522.5 g/m3,单位量Mg2+(1 g)获得的鸟粪石量为4.6 g;以工业MgO为镁源,在最佳反应条件pH=7、n(Mg)/n(P)=1.4、搅拌速度=250 r/min、反应时间=1 h时磷去除率达98.0%,生成的鸟粪石纯度和产量分别为78.0%和633.0 g/m3,单位量Mg2+(1 g)获得的鸟粪石量为5.0 g;盐卤被认为是本研究最优镁源,在最佳反应pH=10、n(Mg)/n(P)=1.4、搅拌速度=200 r/min、反应时间=30 min时,磷去除率达96.7%,生成的鸟粪石纯度和产量最高,为93.0%和674.2 g/m3,单位量Mg2+获得的鸟粪石量也最大,为5.1 g。综合对比,3种镁源中盐卤效果最佳,可作为最优镁源。Abstract: The different efficiencies of struvite generation from phosphorus in iron phosphate wastewater, the components of struvite, the influencing factors, and the optimization of the conditions were compared and analyzed by using seawater, salt brine, and industrial magnesium oxide as the magnesium sources, using orthogonal test and one-way optimization method. The results showed that using seawater as the magnesium source, the phosphorus removal rate was 93.2% at the optimum reaction pH=10, n(Mg)∶n(P)=1.2, stirring speed=200 r/min, reaction time=20 min, and the purity and yield of struvite were 76.8% and 522.5 g/m3, respectively, and the amount of struvite per unit amount of Mg2+ (1 g) was 4.6 g; using industrial magnesium oxide as the magnesium source, the removal rate of phosphorus reached 98.0% at the optimal conditions of pH=7, n(Mg)∶n(P)=1.4, stirring speed=250 r/min, and reaction time=1 h, and the purity and yield of struvite were 78.0% and 633.0 g/m3, respectively, and the amount of struvite per unit of Mg2+ was 5.0 g. Salt brine can be used as the optimal magnesium source for this study, and at the optimum reaction of pH=10, n(Mg)∶n(P)=1.4, stirring speed=200 r/min, and reaction time=30 min resulted in 96.7% phosphorus removal, the highest purity and yield of 93.0% and 674.2 g/m3 of struvite, the maximum amount of struvite obtained per unit of Mg2+ was 5.1 g at the same time. By comprehensive comparison, the effect of salt brine among the three magnesium sources is the best, and it can be used as the optimal magnesium source.
-
Key words:
- seawater /
- salt brine /
- industrial magnesium oxide /
- struvite /
- iron phosphate wastewater
-
[1] 柳后起, 朱勇坤. 污水磷资源回收[J]. 资源节约与环保, 2022(8): 92-95. [2] 郝晓地, 申展, 李季, 等. 国际上主要污水磷回收技术的应用进展及与之相关的政策措施[J]. 环境工程学报, 2022, 16(11): 3507-3516. [3] SANTOS A F, ALMEIDA P V, ALVARENGA P, et al. From wastewater to fertilizer products: alternative paths to mitigate phosphorus demand in European countries [J]. Chemosphere, 2021, 284: 131258. [4] LI B, BOIARKINA I, Yu W, et al. Phosphorous recovery through struvite crystallization: challenges for future design[J]. Science of the Total Environment, 2019, 648: 1244-1256. [5] LU X, SHIH K, LI X Y, et al. Accuracy and application of quantitative X-ray diffraction on the precipitation of struvite product [J]. Water Research, 2016, 90: 9-14. [6] AGUADO D, BARAT R, BOUZAS A, et al. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources [J]. Science of the Total Environment, 2019, 672: 88-96. [7] LIU B, GIANNIS A, ZHANG J, et al. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources[J]. Chemosphere, 2013, 93(11): 2738-2747. [8] SHADDEL S, GRINI T, ANDREASSEN J P, et al. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization[J]. Chemosphere, 2020, 256: 126968. [9] LEE S I, WEON S Y, LEE C W, et al. Removal of nitrogen and phosphate from wastewater by addition of bittern[J]. Chemosphere, 2003, 51(4): 265-271. [10] KRÄHENBÜHL M, ETTER B, UDERT K M. Pretreated magnesite as a source of low-cost magnesium for producing struvite from urine in Nepal[J]. Science of The Total Environment, 2016, 542: 1155-1161. [11] RODRIGUES D M, CARVALHO A P, DO Amaral FragoSO R, et al. Bittern-impregnated sisal: an alternative magnesium source for phosphorus recovery through struvite precipitation?[J]. Journal of Water Process Engineering, 2022, 50: 103227. [12] GUAN Q, ZENG G, GONG B, et al. Phosphorus recovery and iron, copper precipitation from swine wastewater via struvite crystallization using various magnesium compounds[J]. Journal of Cleaner Production, 2021, 328: 129588. [13] 王凌霄, 李再兴, 李涛, 等. 响应曲面法优化污泥碱解上清液中氮磷回收[J]. 水处理技术, 2020, 46(11): 62-67. [14] 国家环境保护总局编. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [15] 叶标, 胡青, 周礼杰, 等. 磷酸铵镁法去除垃圾渗滤液中高浓度氨氮的研究[J]. 环境污染与防治, 2013, 35(7): 31-35. [16] KUMARI S, JOSE S, TYAGI M, et al. A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater[J]. Journal of Cleaner Production, 2020, 254: 120037. [17] 林明, 潘涌璋. 鸟粪石沉淀法回收高浓度含磷废水中磷的研究[J]. 工业用水与废水, 2011, 42(6): 28-32. [18] SHADDEL S, GRINI T, UCAR S, et al. Struvite crystallization by using raw seawater: improving economics and environmental footprint while maintaining phosphorus recovery and product quality[J]. Water Research, 2020, 173: 115572. [19] 吕媛, 项显超, 李继云, 等. 海水和苦卤水作为廉价镁源对尿液废水中磷去除的影响[J]. 环境工程, 2019, 37(10): 105-109. [20] 平倩, 陈静霞, 李咏梅. 鸟粪石法回收制肥工业废水中氨氮的中试研究[J]. 环境工程学报, 2014, 8(9): 3585-3590. [21] GUAN Q, LI Y, ZHONG Y, et al. A review of struvite crystallization for nutrient source recovery from wastewater[J]. Journal of Environmental Management, 2023, 344: 118383. [22] 陈瑶, 李小明, 曾光明, 等. 污水磷回收中磷酸盐沉淀法的影响因素及应用[J]. 工业水处理, 2006(7): 10-14. [23] 林郁, 宋永会, 刘菲, 等. 利用白云石石灰去除与回收污泥厌氧消化液中氮和磷[J]. 环境工程学报, 2014, 8(6): 2198-2204. [24] 王燕群. 鸟粪石结晶法回收废水中磷的研究[D]. 上海:东华大学, 2008. [25] 孙雅, 周通, 陈广源, 等. 鸟粪石晶体生长速率关键影响因素的定量分析[J]. 化工学报, 2021, 72(11):5831-5839. [26] 郝晓地, 兰荔, 王崇臣, 等. MAP沉淀法目标产物最优形成条件及分析方法[J]. 环境科学, 2009, 30(4): 1120-1125. [27] 李秋成. 磷酸铵镁结晶法回收废水中高浓度氮磷技术研究[D]. 南京:南京大学, 2012. [28] 沈颖, 叶志隆, 叶欣, 等. 鸟粪石法回收养猪废水中氮磷时产物的组分与性质研究[J]. 环境科学学报, 2013, 33(1): 92-97. [29] AGUADO D, BARAT R, BOUZAS A, et al. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources[J]. Science of the Total Environment, 2019, 672: 88-96. [30] 陈瑶. 以鸟粪石形式从污水处理厂同时回收氨氮和磷的研究[D]. 长沙:湖南大学, 2006.
点击查看大图
计量
- 文章访问数: 14
- HTML全文浏览量: 9
- PDF下载量: 0
- 被引次数: 0