EFFECT OF ADDING METHANOL ON MICROBIAL COMMUNITIES AND ARGs IN A WASTEWATER TREATMENT PLANT OF AN INDUSTRIAL PARK
-
摘要: 甲醇被广泛用作为提高低碳氮比污水处理效果时使用的外加碳源,但其对工业园区污水处理,特别是抗生素抗性基因(ARGs)影响的报道较少。通过16S rRNA高通量测序和宏基因组测序等方法,对投加甲醇新疆某工业园区污水厂(采用氧化沟+MBR工艺)的处理效果、功能微生物丰度和ARGs变化进行了研究。结果表明:甲醇的投加使该工业园区污水厂出水稳定达到GB 18918—2002《城镇污水处理厂污染物排放标准》中一级A标准;具有降解甲基功能的unclassified_c_Gammaproteobacteria和具有反硝化功能的生丝菌属(Hyphomicrobium)在活性污泥中相对丰度分别高达31.92%和28.68%;进水中ARGs为150.77×10-6,出水ARGs下降到25.77×10-6。研究结果有助于人们深入认识甲醇在工业园区污水处理过程中的作用,并为工业园区污水处理过程新污染物ARGs的控制提供数据支持和理论指导。Abstract: Methanol is widely used as a carbon source to improve the efficiency of wastewater treatment with a low carbon to nitrogen ratio. However, the influences of methanol addition on treatment efficiency of the water treatment facilities in the industrial parks are still rarely reported and unsufficiently understood, especially for the changes in antibiotic resistance genes (ARGs). Here, high-throughput sequencing and metagenomic sequencing methods were employed to reveal the treatment effects using oxidation ditch + MBR process with methanol addition, and the changes in the relative abundance of functional microorganisms and ARGs in a waste water treatment plant of an industrial park in Xinjiang. The results showed that methanol addition improved the effluent quality to consistently meet the class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plants (GB 18918—2002). Furthermore, we found that the relative abundance of unclassified_c_Gammaproteobacteria with methyl degrading function, and Hyphomicrobium with denitrifying function in activated sludge was improved to 31.84% and 28.68%, respectively. More importantly, the total ARGs in the influent were 150.77×10-6, but decreased to 25.77×10-6 in the effluent, indicating that methanol addition significantly reduced ARGs. In summary, these results shed light on understanding the roles of methanol addition in the wastewater treatment process, and further provide data support and theoretical guidance for the controlling of new pollutants ARGs in the industrial parks.
-
Key words:
- methanol /
- industrial park /
- activated sludge /
- functional microorganisms /
- antibiotic resistance genes
-
[1] 刘杰,刘涛,苏红玉,等.我国工业污水集中处理厂运行及水质特征分析[J].给水排水,2021,47(6):92-96,103. [2] 熊子康,郑怀礼,尚娟芳,等.污水反硝化脱氮工艺中外加碳源研究进展[J].土木与环境工程学报(中英文),2021,43(2):168-181. [3] 张周,赵明星,阮文权.不同碳源对餐厨废水短程硝化反硝化处理效果的影响研究[J].环境工程,2018,36(7):46-50. [4] 刘议安,冯凯.高碑店污水处理厂甲醇加药系统的设计探讨[J].市政技术,2018,36(2):158-160. [5] 边靖,卫佳,李彤,等.甘泉堡工业园区污水处理工程设计与运行[J].中国给水排水,2016,32(12):85-89. [6] KARKMAN A, DO T T, WALSH F, et al. Antibiotic-resistance genes in waste water[J]. Trends in Microbiology,2018,26(3):220-228. [7] 包遵胜,熊晓励,刘纪成,等.某污水深度处理厂人工精细化调控碳源投加量的探究[J].环境工程,2023,41(4):137-142. [8] LI C Y, LING Y, ZHANG Y J, et al. Insight into the microbial community of denitrification process using different solid carbon sources: not only bacteria[J]. Journal of Environmental Sciences,2024,144:87-99. [9] 韩丰泽,杨小俊,吕凤,等.不同碳源反硝化脱氮性能及微生物群落研究[J].环境科学与技术,2024,47(6):171-178. [10] 楼超楠,韩昫身,金艳,等.不同碳源对微生物反硝化性能的影响[J].华东理工大学学报(自然科学版),2023,49(5):660-669. [11] 马玉川,吴峰,王洪亮,等.不同碳源驯化活性污泥后其生物多样性的差异及对反硝化的影响的研究[J].工业微生物,2023,53(6):32-34. [12] 郑晓英,乔露露,王慰,等.碳源对反硝化生物滤池运行及微生物种群的影响[J].环境工程学报,2018,12(5):1434-1442. [13] QU Y N, LI P, LIU Y X, et al. External carbon source as a viable tool for controlling antibiotics and antibiotic resistance genes (ARGs) in effluent: influence on antibiotic removal and ARGs dissemination[J]. Journal of Environmental Management,2024,362:121330. [14] ZHANG M L, LI K Y, WANG P L, et al. Comparative insight into the effects of different carbon source supplement on antibiotic resistance genes during whole-run and short-cut nitrification-denitrification processes[J]. Environmental Science and Pollution Research,2023,30:74742-74753. [15] 国家环境保护局.水和废水监测分析方法(第四版)[M]. 北京:中国环境科学出版社,2002. [16] 李聪,杜睿,彭永臻.不同聚集形态短程反硝化耦合厌氧氨氧化系统脱氮性能与碳源利用特性[J].环境工程,2023,41(9):1-9. [17] HU J L, ZHAO F Z, ZHANG X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment,2018,615:1332-1340. [18] 国家环境保护总局,国家质量监督检验检疫总局. GB18918—2002 城镇污水处理厂污染物排放标准[S]. 北京: 中国环境科学出版,2002. [19] 马烨姝,姚俊芹,汪溪远,等.干旱寒冷地区氧化沟工艺活性污泥的菌群结构研究[J].环境工程,2020,38(3):58-62. [20] 柳蒙蒙,陈亚松,魏源送,等.寒冷地区城镇污水处理厂氮转化功能菌群和功能基因季节变化特征分析[J].给水排水,2023,49(10):38-43,52. [21] PLAZA G, JALOWIECKI L, GLOWACKA D, et al. Insights into the microbial diversity and structure in a full-scale municipal wastewater treatment plant with particular regard to Archaea[J]. Plos One,2021,16(4):e0250514. [22] XU J, ZHU C, LIU Y, et al. Nitrogen removal efficiency and microbial community analysis of a high-efficiency honeycomb fixed-bed bioreactor[J]. Water,2020,12(6):1832. [23] FAN X Y, GAO J F, PAN K L, et al. Functional genera, potential pathogens and predicted antibiotic resistance genes in 16 full-scale wastewater treatment plants treating different types of wastewater[J]. Bioresource Technology,2018,268:97-106. [24] 彭永臻,王鸣岐,彭轶,等.四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J].北京工业大学学报,2021,47(10):1158-1166. [25] 鲜文东,张潇橦,李文均.绿弯菌的研究现状及展望[J].微生物学报,2020,60(9):1801-1820. [26] 帅异莹.舟山海域石油烃污染调查及相关石油烃降解微生物的应用研究[D]. 杭州:浙江大学,2019. [27] 徐冉,崔建东,郜爽,等.反硝化硫氧化工艺中功能菌株的筛选、识别及验证[J].环境工程,2023,41(12):123-130. [28] HIRAISHI A, UEDA Y. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov[J]. International Journal of Systematic Bacteriology,1994,44(4):665-673. [29] GUO J, CHENG J P, LI B B, et al. Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations[J]. Journal of Electroanalytical Chemistry,2019,833:433-440. [30] DYKSMA S, LENK S, SAWICKA J E, et al. Uncultured Gammaproteobacteria and Desulfobacteraceae account for major acetate assimilation in a coastal marine sediment[J]. Frontiers in Microbiology,2018,9:3124. [31] ISAKA K, KIMURA Y, OSAKA T, et al. High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria[J]. Water Research,2012,46(16):4941-4948. [32] FENG L J, WU G Y, ZHANG Z L, et al. Improving denitrification performance of biofilm technology with salt-tolerant denitrifying bacteria agent for treating high-strength nitrate and sulfate wastewater from lab-scale to pilot-scale[J]. Bioresource Technology,2023,387:129696. [33] SUN Y X, SHEN D D, ZHOU X L, et al. Microbial diversity and community structure of denitrifying biological filters operated with different carbon sources[J]. Springer Plus,2016,5:1752. [34] 杨婷,杨娅,刘玉香.异养硝化-好氧反硝化的研究进展[J].微生物学通报,2017,44(9):2213-2222. [35] LIANG Z H, YAO J Q, MA H Y, et al. A sludge bulking wastewater treatment plant with an oxidation ditch-denitrification filter in a cold region: bacterial community composition and antibiotic resistance genes[J]. Environmental Science and Pollution Research,2023,30:33767-33779. [36] 张冰,赵琳,陈坦.城市污水处理厂抗生素抗性基因研究进展[J].环境工程技术学报,2023,13(4):1384-1394. [37] WU Y Y, GONG Z R, WANG S J, et al. Occurrence and prevalence of antibiotic resistance genes and pathogens in an industrial park wastewater treatment plant[J]. Science of the Total Environment,2023,880:163278. [38] 付树森,王艺,王肖霖,等.氯和紫外消毒过程中胞外抗性基因的产生特征[J].中国环境科学,2021,41(10):4756-4762. [39] TONG J, TANG A P, WANG H Y, et al. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes[J]. Bioresource Technology,2019,272:489-500.
点击查看大图
计量
- 文章访问数: 18
- HTML全文浏览量: 7
- PDF下载量: 0
- 被引次数: 0