EFFECT OF LITHIUM CHLORIDE BLENDING ON CHLORINE RESISTANCE OF PVDF ULTRAFILTRATION MEMBRANE
-
摘要: 为考察氯化锂(LiCl)共混改性对聚偏氟乙烯(PVDF)超滤膜耐氯性的影响,采用聚乙烯吡咯烷酮(PVP)作为致孔剂和亲水改性剂,通过非溶剂致相分离法制备了PVDF和PVDF/LiCl膜,考察了次氯酸钠(NaClO)静态加速老化前后2种膜性质和性能的变化。结果表明:添加LiCl使得相转化成膜过程中更多的PVP保留在膜上,且增加了PVDF的极性β相比例,使 PVDF/LiCl膜的亲水性增强,孔隙率增加;NaClO老化造成PVP氧化流失和膜亲水性降低,采用牛血清蛋白作为模型有机物的过滤实验表明,NaClO老化使PVDF和PVDF/LiCl膜的污染阻力分别增加88%和49%,PVDF/LiCl膜抗污染性能下降幅度明显小于PVDF膜。总体而言,LiCl共混改性减缓了NaClO造成的PVDF膜性质的变化,提升了PVDF膜的耐氯性。Abstract: To investigate the effect of lithium chloride (LiCl) blending on chlorine resistance of polyvinylidene fluoride (PVDF) ultrafiltration membrane, PVDF and PVDF/LiCl membranes were prepared by non-solvent induced phase separation method using polyvinylpyrrolidone (PVP) as the pore-forming agent and hydrophilic additive. The changes in membrane properties and performance due to static accelerated sodium hypochlorite (NaClO) aging were investigated. The results showed that the addition of LiCl enabled more PVP to remain on the membrane during the phase conversion process, and increased the proportion of polar β PVDF. Therefore, the hydrophilicity and porosity of the PVDF/LiCl membrane were higher than those of the PVDF membrane. NaClO aging resulted in oxidation and dislodgement of PVP and a decrease in membrane hydrophilicity. Filtration experiments using bovine serum protein as a model organic foulant showed that NaClO aging increased the fouling resistance of PVDF and PVDF/LiCl membranes by 88% and 49%, respectively. The deterioration of fouling resistance of PVDF/LiCl membrane, due to NaClO aging, was significantly lower than that of PVDF membrane. In general, LiCl blending can improve the chlorine resistance of PVDF membranes by alleviating the change of membrane properties, due to NaClO aging.
-
[1] 张姣,肖康,梁帅,等. 膜技术在中国市政污水处理与再生中的应用现状与未来挑战[J]. 环境工程, 2022, 40(3): 1-6,153. [2] 郑晨,马晓力. 超滤技术在给水处理中的应用及发展状况[J]. 环境工程, 2013, 31: 163-195. [3] 颜明姣,王磊,李陈,等. 臭氧预处理制备PVDF接枝SSS离子交换膜[J]. 环境工程学报, 2016, 10(11): 6364-6370. [4] 朱佳,刘研萍,姜晓锋,等. 超滤膜处理重金属废水的膜污染控制中试[J]. 环境工程, 2018, 36(10): 64-69. [5] 孔繁鑫,肖伟豪,何建华,等. 陶瓷膜强化高钙镁油藏聚合物驱采出水处理工艺研究[J]. 环境工程, 2021, 39(7): 128-132,72. [6] 王旭亮,李宗雨,董泽亮,等. 超滤过程的膜污染和运行条件优化[J]. 工业用水与废水, 2019, 50(1): 1-4. [7] VAN DEN BRINK P, VERGELDT F, VAN AS H, et al. Potential of mechanical cleaning of membranes from a membrane bioreactor[J]. Journal of Membrane Science, 2013, 429: 259-267. [8] WANG Z, MA J, TANG C Y, et al. Membrane cleaning in membrane bioreactors: a review[J]. Journal of Membrane Science, 2014, 468: 276-307. [9] 姚海博,吴世红,尹延梅,等. 中空纤维超滤膜处理聚合物驱采油污水中膜污染特性分析[J]. 环境工程, 2021, 39(7): 145-150. [10] ZHANG Y, WANG J, GAO F, et al. Impact of sodium hypochlorite (NaClO) on polysulfone (PSF) ultrafiltration membranes: the evolution of membrane performance and fouling behavior[J]. Separation and Purification Technology, 2017, 175: 238-247. [11] LI K, SU Q, LI S, et al. Aging of PVDF and PES ultrafiltration membranes by sodium hypochlorite: effect of solution pH[J]. Journal of Environmental Sciences, 2021, 104: 444-455. [12] ABDULLAH S Z, BÉRUBÉ P R. Filtration and cleaning performances of PVDF membranes aged with exposure to sodium hypochlorite[J]. Separation and Purification Technology, 2018, 195: 253-259. [13] TANG Y, LIN Y, MA W, et al. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application[J]. Journal of Membrane Science, 2021, 639: 1-26. [14] 李振,王磊,王旭东,等. PVDF/PVP改进超滤膜用于城市污水再生时的膜清洗方式与调控试验研究[J]. 水处理技术, 2013, 39(4): 70-74. [15] PELLEGRIN B, PRULHO R, RIVATON A, et al. Multi-scale analysis of hypochlorite induced PES/PVP ultrafiltration membranes degradation[J]. Journal of Membrane Science, 2013, 447: 287-296. [16] HONG S M, ETACHERI V, HONG C N, et al. Enhanced lithium- and sodium-ion storage in an interconnected carbon network comprising electronegative fluorine[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18790-18798. [17] YU L, ZHAO H, LIN Y, et al. Sound insulation enhancement of PVB/PVDF film by adding LiCl[J]. Polymer, 2023, 288. [18] 毛学语,魏冲,刘聪聪,等. 氯化锂对聚醚砜膜过滤性能和污染行为的影响[J]. 水处理技术, 2021, 47(2): 43-47. [19] 宁静恒,赵俊,李玉平,等. 正渗透复合膜的制备及表征[J]. 环境工程学报, 2014, 8(10): 4183-4190. [20] 闫勇,赵长伟,曾楚怡,等. 混合添加剂对TiO2/PVDF平板超滤膜性能和结构的影响[J]. 水处理技术, 2011, 37(9): 68-72. [21] LI K, XU W, WEN G, et al. Aging of polyvinylidene fluoride (PVDF) ultrafiltration membrane due to ozone exposure in water treatment: evolution of membrane properties and performance[J]. Chemosphere, 2022, 308(3):136520. [22] CHENG X, LI P, ZHOU W, et al. Effect of peroxymonosulfate oxidation activated by powdered activated carbon for mitigating ultrafiltration membrane fouling caused by different natural organic matter fractions[J]. Chemosphere, 2019, 221: 812-823. [23] LIN C F, YU-CHEN LIN A, SRI CHANDANA P, et al. Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline[J]. Water Research, 2009, 43(2): 389-394. [24] 封莉,张立秋,马放. 膜堵塞机理研究与膜阻力测定[J]. 环境工程, 2002, 20(3): 75-77,6. [25] REN L, YU S, YANG H, et al. Chemical cleaning reagent of sodium hypochlorite eroding polyvinylidene fluoride ultrafiltration membranes: aging pathway, performance decay and molecular mechanism[J]. Journal of Membrane Science, 2021, 625: 1-10. [26] GAO F, WANG J, ZHANG H, et al. Aged PVDF and PSF ultrafiltration membranes restored by functional polydopamine for adjustable pore sizes and fouling control[J]. Journal of Membrane Science, 2019, 570/571: 156-167. [27] BALASUBRAMANIAN D, RASHID, SHAILKH. On the interaction of lithium salts with model amides[J]. BIOPOLYMERS, 1973, 12: 1639-1650. [28] ZHOU Z, HUANG G, XIONG Y, et al. Unveiling the susceptibility of functional groups of poly(ether sulfone)/polyvinylpyrrolidone membranes to NaOCl: a two-dimensional correlation spectroscopic study[J]. Environmental Science & Technology, 2017, 51(24): 14342-14351. [29] FONTANANOVA E, JANSEN J C, CRISTIANO A, et al. Effect of additives in the casting solution on the formation of PVDF membranes[J]. Desalination, 2006, 192(1/2/3): 190-197. [30] MARTINS P, LOPES A C, LANCEROS-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications[J]. Progress in Polymer Science, 2014, 39(4): 683-706. [31] CAI X, LEI T, SUN D, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances, 2017, 7(25): 15382-15389. [32] ALI B T I, ROMADIANSYAH T Q, LESTARI W C, et al. Modification of PVDF ultrafiltration membrane for high concentration of nannochloropsis as a raw material for bioethanol: computations and experiments[J]. South African Journal of Chemical Engineering, 2023, 46: 42-55. [33] 黄师荣,吴国忠,曾虹燕. LiCl添加剂对超临界CO2诱导相转化所形成的PVDF膜结构的影响[J]. 膜科学与技术, 2009, 29(2): 28-33. [34] GANBOLD E, KIM E S, LI Y, et al. Highly sensitive interdigitated capacitive humidity sensors based on sponge-like nanoporous PVDF/LiCl composite for real-time monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4559-4568. [35] 鲍文烜,许振良,杨虎,等. 聚偏氟乙烯(PVDF)中空纤维超滤膜的电性能与渗透性能[J]. 华东理工大学学报, 2008, 34(5): 627-634. [36] LIN D J, CHANG C L, HUANG F M, et al. Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system[J]. The International Journal for the Science and Technology of Polymers, 2003: 413-422. [37] 杨晓天,许振良,魏永明. 添加剂对PVDF凝胶速率和膜性能的影响[J]. 膜科学与技术, 2007, 27(4): 26-30. [38] GUILLEN G R, RAMON G Z, KAVEHPOUR H P, et al. Direct microscopic observation of membrane formation by nonsolvent induced phase separation[J]. Journal of Membrane Science, 2013, 431: 212-220.
点击查看大图
计量
- 文章访问数: 21
- HTML全文浏览量: 17
- PDF下载量: 0
- 被引次数: 0