INFLUENCE OF IMPURITIES ON DISSOLUTION BEHAVIOR OF SODIUM SULFATE IN COAL CHEMICAL INDUSTRY SALINE WASTEWATER
-
摘要: 研究含盐废液中典型杂质对硫酸钠溶解行为影响机制,有利于优化硫酸钠废盐结晶工艺,促进硫酸钠高值化利用。以煤化工行业硫酸钠杂质体系为研究对象,使用OLI与COSMO-RS研究了温度、典型无机杂质离子和有机杂质对硫酸钠溶解度、溶剂化及相互作用的影响规律。结果表明,硫酸钠溶解行为由杂质极性、Na+与SO42-溶剂化能力、杂质浓度及同离子效应共同控制,极性影响最强。弱极性Ca2+、NH4+、K+、HCO3-、F-、NO3-促进硫酸钠结晶,其中,阳离子通过同离子效应协同促进硫酸钠结晶,阴离子通过同离子效应及削弱Na+与SO42-溶剂化作用协同促进硫酸钠结晶;强极性Mg2+、CO32-抑制硫酸钠结晶,Mg2+通过增强Na+与SO42-溶剂化协同促进硫酸钠溶解,CO32-通过强极性特征,促进硫酸钠溶解,在含盐废液中去除Mg2+和CO32-是促进硫酸钠结晶的必要措施;低浓度有机杂质通过削弱Na+与SO42-溶剂化作用促进Na2SO4结晶。相关理论研究为硫酸钠废盐资源化提供理论支撑。Abstract: The study on the influence of typical impurities in saline wastewater on the crystalline properties of sodium sulfate is beneficial for optimizing the sodium sulfate crystallization process and promoting the value-added utilization of sodium sulfate. Taking the sodium sulfate waste impurities system in the coal chemical industry as the research object, this study used OLI and COSMO-RS to investigate the effects of temperature, typical inorganic impurity ions, and organic impurities on the solubility, solvation, and interactions of sodium sulfate. The results indicate that the solubility behavior of sodium sulfate is controlled by the polarity of impurities, the solvation capacity of Na+ and SO42-, the concentration of impurities, and the common ion effect, with polarity exerting the strongest influence. Calcium ions (Ca2+), ammonium ions (NH4+), potassium ions (K+), bicarbonate ions (HCO3-), fluoride ions (F-), and nitrate ions (NO3-) are with less polarity than Na+ and SO42-, and they promote the crystallization of sodium sulfate. Among these, cations promote the crystallization of sodium sulfate through the common ion effect, while anions promote it through both the common ion effect and weakening the solvation of Na+ and SO42-. Magnesium ions (Mg2+) and carbonate ions (CO32-) promote the dissolution of sodium sulfate. Magnesium ions enhance the solvation of Na+ and SO42-, thus promoting the dissolution of sodium sulfate, while carbonate ions promote the dissolution of sodium sulfate through their strong polarity. Removing Mg2+ and CO32- from saline wastewater is a necessary measure to promote the crystallization of sodium sulfate. At low concentrations, organic impurities promote the crystallization of Na2SO4 by weakening the interaction between Na+ and SO42-. Calcium ions and fluoride ions not only significantly increase the freezing crystallization time of sodium sulfate, but also generate new substances with sodium sulfate. Related theoretical research provides theoretical support for the utilization of sodium sulfate waste salt.
-
Key words:
- sodium sulfate /
- organic impurities /
- inorganic impurities /
- dissolution behavior /
- solvation
-
[1] 中华人民共和国生态环境部. 关于印发《危险废物环境管理指南 陆上石油天然气开采》等七项危险废物环境管理指南的公告[Z]. 2021. [2] 刘丽. 现代煤化工含盐废水处理技术进展及对策建议[J]. 内蒙古煤炭经济, 2019, 15: 211. [3] 张润楠, 范晓晨, 贺明睿, 等. 煤气化废水深度处理与回用研究进展[J]. 化工学报, 2015, 66(9): 3341-3349. [4] CUI P, YU Q, YANG S. New water treatment index system toward zero liquid discharge for sustainable coal chemical processes[J]. ACS Sustainable Chem Eng, 2018, 6(1): 1370-1378. [5] 张笛, 曹宏斌, 赵赫, 等. 工业污染控制发展历程及趋势分析[J]. 环境工程, 2022, 40(1): 1-7,206. [6] 俞德仁, 叶涛, 柏明锁, 等. 一种煤化工副产品硫酸钠制备纯碱系统: CN219823690U[P]. 2023-10-13. [7] 张旭, 于淼, 陈宋璇, 等. 硫酸钠制纯碱的系统: CN218872168U[P]. 2022-12-08. [8] 赵诗雅, 刘琪. 通过硫酸钠制备纯碱的方法及其应用: CN115784263A[P]. 2023-03-14. [9] LIU J, XU F, YUAN J, et al. High-value conversion of Na2SO4 wastewater by a continuous electrodialytic metathesis process: effects of coexisting ions[J]. Journal of Membrane Science, 2020, 615: 118584. [10] ZHAO Y, WANG X, YUAN J, et al. An efficient electrodialysis metathesis route to recover concentrated NaOH-NH4Cl products from simulated ammonia and saline wastewater in coal chemical industry[J]. Separation and Purification Technology, 2022, 301(15): 122042. [11] 张妍, 刘红雨, 肖远航. 含硫酸钠工业废盐的提纯研究[J]. 天津化工, 2023, 37(5): 116-118. [12] 苏楠楠. 煤化工高盐废水分质结晶过程研究[D]. 天津:天津大学, 2018. [13] 杜海. 煤化工高盐废水分质结晶基础研究[D]. 郑州:郑州大学, 2021. [14] 朱秋楠. 煤化工高盐废水分质提盐基础与结晶工艺研究[D]. 银川:宁夏大学, 2019. [15] GE S Y, MA Y L, ZHU L, et al. Study of the solubility, supersolubility, and metastable zone width of ternary system (NaCl+Na2SO4+H2O) containing organic impurity at 333.15 K[J]. J Chem Eng Data, 2019, 64(12):5113-5121. [16] 宫海燕, 李彩虹, 王佩佩, 等. 杂质对溶液结晶过程的研究进展[J]. 化学与生物工程, 2010, 27(3): 9-12. [17] 张响飞. Na2CO3,Na2SO4和NaCl混合物溶解动力学研究[D]. 北京:中国科学院大学, 2018. [18] QIAO K, CHEN J, HAN J, et al. Solid-liquid phase equilibrium for the hexamethylenetetramine-NH4Cl-H2O system: solubility determination, model correlation and molecular simulation[J]. Chemical Physics Letters, 2023, 816: 140393. [19] CHEN Y, YU H, LI Y. Highly efficient and superfast cellulose dissolution by green chloride salts and its dissolution mechanism[J]. ACS Sustainable Chem Eng, 2020, 8(50): 18446-18454. [20] ROY S, BOCHAROVA V, STACK A G, et al. Nucleation rate theory for coordination number: elucidating water-mediated formation of a zigzag Na2SO4 Morphology[J]. ACS Applied Materials & Interfaces, 2022, 14(47): 53213-53227. [21] SHI J, HUANG W, HAN H, et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination, 2020, 493: 114640. [22] 刘光启, 马连湘, 刘杰, 等. 化学化工物性数据手册(无机卷)[M]. 北京:化学工业出版社, 2002. [23] LIU Q Q, LIN G H, ZHOU J, et al. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3-Na2CO3 aqueous solution: experiments and computer simulations[J]. Chinese Journal of Chemical Engineering, 2023, 55: 49-58. [24] SU N N, WANG Y L, XIAO Y, et al. Mechanism of influence of organic impurity on crystallization of sodium sulfate[J]. Ind Eng Chem Res, 2018, 57(5): 1705-1713. [25] VAUDEVIRE E, RADMANESH F, KOLKMAN A, et al. Fate and removal of trace pollutants from an anion exchange spent brine during the recovery process of natural organic matter and salts[J]. Water Research, 2019, 154: 34-44. [26] LI P Y, LI G N, XIAO W, et al. Na+/Mg2+ interactions on membrane distillation permeation flux and crystallization performance during high saline solution treatment[J]. Separation and Purification Technology, 2021, 259: 118191. [27] KURNIA K A, FERNANDES A M, PINHO S P, et al. Ion speciation: a key for the understanding of the solution properties of ionic liquid mixtures[J]. Physical Chemistry Chemical Physics, 2019, 38(21): 21626. [28] LI J B, WENG L P, DENG Y X, et al. NOM-mineral interaction: significance for speciation of cations and anions[J]. Science of the Total Environment, 2022, 820: 153259.
点击查看大图
计量
- 文章访问数: 16
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0