中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的短程硝化/短程反硝化-厌氧氨氧化工艺脱氮性能预测与关键参数识别

吴宇伦 李泽敏 成晓倩 邱光磊 韦朝海

吴宇伦, 李泽敏, 成晓倩, 邱光磊, 韦朝海. 基于机器学习的短程硝化/短程反硝化-厌氧氨氧化工艺脱氮性能预测与关键参数识别[J]. 环境工程, 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
引用本文: 吴宇伦, 李泽敏, 成晓倩, 邱光磊, 韦朝海. 基于机器学习的短程硝化/短程反硝化-厌氧氨氧化工艺脱氮性能预测与关键参数识别[J]. 环境工程, 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
Citation: WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017

基于机器学习的短程硝化/短程反硝化-厌氧氨氧化工艺脱氮性能预测与关键参数识别

doi: 10.13205/j.hjgc.202409017
基金项目: 

国家自然科学基金项目“工业废水的形成、资源化利用与污染控制——以钢铁、冶金、矿山废水为例”(U1901218)

详细信息
    作者简介:

    吴宇伦(1999-),男,硕士研究生,主要研究方向为废水生物处理。mr_wuyulun@sina.com

    通讯作者:

    韦朝海(1962-),男,教授,主要研究方向为水污染控制理论及技术。cechwei@scut.edu.cn

PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING

  • 摘要: 短程硝化-厌氧氨氧化(PNA)与短程反硝化-厌氧氨氧化(PDA)工艺的脱氮性能会受到许多参数的影响。在综合考虑各种参数的基础上,对2种工艺的脱氮性能进行预测,并识别关键参数,能够为其实际工程应用提供优化目标。解决上述问题时,实验方法耗时耗力,而传统数学模型难以处理非线性关系。因此采用机器学习技术,构建的随机森林(RF)机器学习模型对2个工艺的出水总氮(TN)浓度进行了高精度预测,对PNA和PDA工艺出水TN浓度预测结果的决定系数(R2)分别为0.728、0.812。SHAP方法能够较好地解释模型的预测过程,并对各参数进行了重要性排序。在PNA工艺中,出水TN浓度主要受到进水TN浓度及COD浓度的影响。在PDA工艺中,出水TN浓度首先受进水TN浓度及氮负荷的约束。在此基础上,进水COD浓度作为另一重要因素影响着工艺的出水TN浓度。进水COD浓度在2个工艺中的共同重要性表明,2种工艺在实际应用时需要预先做好污废水中碳源的管理与分配,预分离与应用策略非常重要。该研究采用机器学习模型为PNA与PDA工艺脱氮性能的预测提供了方法指导,并基于SHAP的模型解释为2种工艺在实际应用时的关键参数识别与优化提供了选择依据。
  • [1] AHMAD H A, AHMAD S, GAO L, et al. Energy-efficient and carbon neutral anammox-based nitrogen removal by coupling with nitrate reduction pathways: a review[J]. Science of The Total Environment, 2023,889: 164213.
    [2] IZADI P, SINHA P, ANDALIB M, et al. Coupling fundamental mechanisms and operational controls in mainstream partial denitrification for partial denitrification anammox applications: a review[J]. Journal of Cleaner Production, 2023,400: 136741.
    [3] WU P, CHEN J, GARLAPATI V K, et al. Novel insights into Anammox-based processes: a critical review[J]. Chemical Engineering Journal, 2022,444: 136534.
    [4] ZHANG X, ZHANG X, CHEN J, et al. A critical review of improving mainstream anammox systems: based on macroscopic process regulation and microscopic enhancement mechanisms[J]. Environmental Research, 2023,236: 116770.
    [5] GHOLAMI-SHIRI J, AZARI M, DEHGHANI S, et al. A technical review on the adaptability of mainstream partial nitrification and anammox: substrate management and aeration control in cold weather[J]. Journal of Environmental Chemical Engineering, 2021,9(6): 106468.
    [6] LAW Y, MATYSIK A, CHEN X, et al. High dissolved oxygen selection against Nitrospira Sublineage Ⅰ in full-scale activated sludge[J]. Environmental Science & Technology, 2019,53(14): 8157-8166.
    [7] 郝晓地, 杨万邦, 李季, 等. 厌氧氨氧化技术研究与应用反差现象归因[J]. 环境科学学报, 2023,43(9): 1-13.
    [8] HUAGUANG L, WENYI D, ZILONG Z, et al. Anammox-based technologies for municipal sewage nitrogen removal: advances in implementation strategies and existing obstacles[J]. Journal of Water Process Engineering, 2023,55: 104090.
    [9] YOU Q, WANG J, QI G, et al. Anammox and partial denitrification coupling: a review[J]. RSC Advances, 2020,10(21): 12554-12572.
    [10] GANI K M, AWOLUSI O O, KHAN A A, et al. Potential strategies for the mainstream application of anammox in treatment of anaerobic effluents: a review[J]. Critical Reviews in Environmental Science and Technology, 2021,51(21): 2567-2594.
    [11] 朱腾义, 张玉, 程浩淼, 等. 基于可解释性机器学习的纳滤膜去除有机微污染物研究[J]. 环境科学学报, 2023,43(7): 194-203.
    [12] YANG J, CHEN Z, WANG X, et al. Elucidating nitrogen removal performance and response mechanisms of anammox under heavy metal stress using big data analysis and machine learning[J]. Bioresource Technology, 2023,382: 129143.
    [13] LIU S, WU F, GUO M, et al. A comprehensive literature mining and analysis of nitrous oxide emissions from different innovative mainstream anammox-based biological nitrogen removal processes[J]. Science of The Total Environment, 2023,904: 166295.
    [14] LV J, DU L, LIN H, et al. Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning[J]. Bioresource Technology, 2024,393: 130008.
    [15] RUDIN C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence, 2018,1: 206-215.
    [16] KAO C, LI J, GAO R, et al. Advanced nitrogen removal from real municipal wastewater by multiple coupling nitritation, denitritation and endogenous denitritation with anammox in a single suspended sludge bioreactor[J]. Water Research, 2022,221: 118749.
    [17] SU B, LIU Q, LIANG H, et al. Simultaneous partial nitrification, Anammox, and denitrification in an upflow microaerobic membrane bioreactor treating middle concentration of ammonia nitrogen wastewater with low COD/TN ratio[J]. Chemosphere, 2022,295: 133832.
    [18] THONGSAI A, KRISHNAN S, NOOPHAN P L, et al. Performance and microbial analysis of a fluidized bed membrane bioreactor operated in the partial nitrification and anammox (PN/A) mode for polishing anaerobically treated effluent to industrial discharge standard[J]. Journal of Environmental Chemical Engineering, 2023,11(3): 109808.
    [19] WANG Y, LI B, XUE F, et al. Partial nitrification coupled with denitrification and anammox to treat landfill leachate in a tower biofilter reactor (TBFR)[J]. Journal of Water Process Engineering, 2021,42: 102155.
    [20] XU P, MENG J, LI X, et al. Insights into complete nitrate removal in one-stage nitritation-Anammox by coupling heterotrophic denitrification[J]. Journal of Environmental Management, 2021,298: 113431.
    [21] XU X, QIU L, WANG C, et al. Achieving mainstream nitrogen and phosphorus removal through Simultaneous partial Nitrification, Anammox, Denitrification, and Denitrifying Phosphorus Removal (SNADPR) process in a single-tank integrative reactor[J]. Bioresource Technology, 2019,284: 80-89.
    [22] JI J, PENG Y, WANG B, et al. Synergistic Partial-Denitrification, Anammox, and in-situ Fermentation (SPDAF) Process for Advanced Nitrogen Removal from Domestic and Nitrate-Containing Wastewater[J]. Environmental Science & Technology, 2020,54(6): 3702-3713.
    [23] LI X, DU R, ZHANG J, et al. Verifying the applicability of PD/A unit for ultimate sidestream and mainstream polishing: operating performance, granular characteristics and active microbes[J]. Chemical Engineering Journal, 2023,466: 143300.
    [24] LIN L, LUO Z, ZHANG Y, et al. Partial denitrification-anammox granular sludge domesticated from high-strength anammox granules and the high-efficiency performance in treating low-nitrogen wastewater[J]. Chemical Engineering Journal, 2023,477: 147281.
    [25] LIU Q, PENG Y, ZHAO Y, et al. Excellent anammox performance driven by stable partial denitrification when encountering seasonal decreasing temperature[J]. Bioresource Technology, 2022,364: 128041.
    [26] TAO Y, SHI R, LI L, et al. Performance optimization and nitrogen removal mechanism of up-flow partial denitrification/anammox process[J]. Journal of Environmental Management, 2023,348: 119191.
    [27] WANG D, HE Y, ZHANG X. A comprehensive insight into the functional bacteria and genes and their roles in simultaneous denitrification and anammox system at varying substrate loadings[J]. Applied Microbiology and Biotechnology, 2019,103(3): 1523-1533.
    [28] ZHANG J, PENG Y, LI X, et al. Feasibility of partial-denitrification/anammox for pharmaceutical wastewater treatment in a hybrid biofilm reactor[J]. Water Research, 2022,208: 117856.
    [29] ZHANG L, ZHANG Q, LI X, et al. Enhanced nitrogen removal from municipal wastewater via a novel combined process driven by partial nitrification/anammox (PN/A) and partial denitrification/anammox (PD/A) with an ultra-low hydraulic retention time (HRT)[J]. Bioresource Technology, 2022,363: 127950.
    [30] YE G, WAN J, DENG Z, et al. Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: bayesian optimization machine learning methods[J]. Bioresource Technology, 2024,395: 130361.
    [31] PARK J, LEE W H, KIM K T, et al. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence[J]. Science of the Total Environment, 2022,832: 155070.
    [32] ZHANG X, LIU Y, LI Z R, et al. Impact of COD/N on anammox granular sludge with different biological carriers[J]. Science of The Total Environment, 2020,728: 138557.
    [33] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: a review[J]. Chemical Engineering Journal, 2012,197(none): 67-79.
    [34] ZHANG Y, DENG J, XIAO X, et al. Insights on pretreatment technologies for partial nitrification/anammox processes: a critical review and future perspectives[J]. Bioresource Technology, 2023,384: 129351.
    [35] 薛同站, 全志道, 李卫华, 等. 短程反硝化强化脱氮的影响因素及其耦合工艺应用进展[J]. 环境工程技术学报, 2024,14(2): 663-671.
    [36] 杨京月, 郑照明, 李军, 等. 厌氧氨氧化耦合反硝化底物竞争抑制特性[J]. 中国环境科学, 2018,38(8): 2947-2953.
    [37] LIANG Y, LI Z, ZHANG B, et al. Decryption for nitrogen removal in Anammox-based coupled systems: nitrite-induced mechanisms[J]. Bioresource Technology, 2023,384: 129274.
    [38] TRINH H P, LEE S, JEONG G, et al. Recent developments of the mainstream anammox processes: challenges and opportunities[J]. Journal of Environmental Chemical Engineering, 2021,9(4): 105583.
    [39] WEI C, LI Z, PAN J, et al. An oxic-hydrolytic-oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS ES&T Water, 2021,1(5): 1252-1262.
    [40] TABOADA-SANTOS A, RIVADULLA E, PAREDES L, et al. Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations[J]. Water Research, 2020,169: 115258.
    [41] HE X, KE X, WEI T, et al. Process energy and material consumption determined by reaction sequence: from AAO to OHO[J]. Water, 2024,16: 1796.
    [42] CHEN Y, CHEN A, LI Z, et al. O/H/H/O process for total nitrogen removal: an upgrade of the A/A/O process for coking wastewater treatment[J]. ACS ES&T Engineering, 2023,3(9): 1236-1247.
    [43] WEI T, PAN J, KE X, et al. Evaluation of carbon and nitrogen removal performance of the oxic-hydrolytic and denitrification-oxic process in coking wastewater treatment[J]. ACS ES&T Water, 2023,3(1): 236-245.
    [44] LI Z, WEI T, PAN J, et al. Physicochemical pre- and post-treatment of coking wastewater combined for energy recovery and reduced environmental risk[J]. Journal of Hazardous Materials, 2023,447: 130802.
    [45] ZHU S, DENG J, JIN X, et al. Diverse and distinct bacterial community involved in a full-scale A/O1/H/O2 combination of bioreactors with simultaneous decarbonation and denitrogenation of coking wastewater[J]. Environmental Science and Pollution Research, 2022,30.
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回