中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垃圾焚烧烟气多污染物一体化净化技术现状和发展趋势

陈建军 龙吉生 陈琳 白力 李俊华

陈建军, 龙吉生, 陈琳, 白力, 李俊华. 垃圾焚烧烟气多污染物一体化净化技术现状和发展趋势[J]. 环境工程, 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020
引用本文: 陈建军, 龙吉生, 陈琳, 白力, 李俊华. 垃圾焚烧烟气多污染物一体化净化技术现状和发展趋势[J]. 环境工程, 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020
CHEN Jianjun, LONG Jisheng, CHEN Lin, BAI Li, LI Junhua. STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020
Citation: CHEN Jianjun, LONG Jisheng, CHEN Lin, BAI Li, LI Junhua. STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020

垃圾焚烧烟气多污染物一体化净化技术现状和发展趋势

doi: 10.13205/j.hjgc.202409020
基金项目: 

国家自然科学基金面上项目(52070114)

详细信息
    作者简介:

    陈建军(1981-),男,副研究员,主要研究方向为烟气多污染物控制技术。chenjianjun@tsinghua.edu.cn

    通讯作者:

    龙吉生(1966-),男,高级工程师,主要研究方向为垃圾焚烧发电与污染物控制技术。long@shjec.cn

    李俊华(1970-),男,教授,主要研究方向为大气污染化学及控制技术。lijunhua@tsinghua.edu.cn

STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS

  • 摘要: 垃圾焚烧发电已成为我国城市生活垃圾处理的主要方式,随着焚烧烟气污染物排放标准日趋严格,烟气多污染物串联分步净化工艺存在流程长、占地大、设备多、投资和运行成本高的问题。为解决以上问题,垃圾焚烧烟气净化工艺有必要从“单一污染物控制”向“多污染物协同控制”发展,烟气多污染物一体化净化成为新趋势。讨论了垃圾焚烧烟气多污染物一体化协同净化技术的机理、技术特征、关键影响因素、优缺点以及工程应用情况,最后提出了对未来研究的建议和展望,以期为开发一体化净化新技术提供启示,并推动县域小型垃圾焚烧发电厂烟气处理的发展。
  • [1] 房德职, 李克勋. 国内外生活垃圾焚烧发电技术进展[J]. 发电技术, 2019, 40(4): 367-376.
    [2] JONES A M, HARRISON R M.Emission of ultrafine particles from the incineration of municipal solid waste: a review[J]. Atmospheric Environment, 2016, 140: 519-528.
    [3] CLOIREC P L. Treatments of polluted emissions from incinerator gases: a succinct review[J]. Reviews in Environmental Science and Bio/Technology, 2012, 11(4): 381-392.
    [4] 上海市环境保护局,上海市质量技术监督局. 生活垃圾焚烧大气污染物排放标准:DB 31/768—2013[S]. 上海, 2013.
    [5] 河北省生态环境厅,河北省市场监督管理局. 河北省生活垃圾焚烧处理大气污染控制标准:DB 13/5325—2021[S]. 河北, 2021.
    [6] 海南省市场监督管理局. 海南省生活垃圾焚烧污染控制标准:DB 46/484—2019[S]. 海南, 2019.
    [7] VEHLOW J. Air pollution control systems in WtE units: an overview[J]. Waste Management, 2015, 37: 58-74.
    [8] Best Available Techniques (BAT) Reference Document for Waste Incineration[R]. 2019.
    [9] 王琪, 黄启飞, 李丽,等. 生活垃圾焚烧污染控制标准 (征求意见稿)编制说明[R]. 中国环境科学研究院, 2010.
    [10] 刘辉, 向怡, 史学峰,等. 某垃圾焚烧厂烟气净化工艺选择分析研究[J]. 环境科学与管理, 2016,41(4): 101-104.
    [11] 张建超, 王秋麟, 金晶,等. SCR催化剂低温协同脱除二噁英和NOx研究进展[J]. 应用化工, 2019, 48(1): 7.
    [12] ZHAO H Y, MENG P, GAO S, et al. Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction[J]. Science of the Total Environment, 2024, 906: 167553.
    [13] 能士峰, 刘庆岭, 张旺,等. 垃圾焚烧SCR脱硝催化剂的研究进展[J]. 现代化工, 2022,42(2): 31-34.
    [14] WANG D, CHEN Q Z, ZHANG X, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: a critical review[J]. Environmental Science & Technology, 2021, 55(5): 2743-2766.
    [15] LI G B, SHEN K, WANG L, et al. Synergistic degradation mechanism of chlorobenzene and NOx over the multi-active center catalyst: the role of NO2, Brønsted acidic site, oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 286: 119865.
    [16] GALLASTEGI-VILLA M, ARANZABAL A, GONZÁLEZ-MARCOS J A, et al. Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration[J]. Applied Catalysis B: Environmental, 2017, 205: 310-318.
    [17] SU G J, HUANG L Y, LIU S, et al. The combined disposal of 1,2,4-trichlorobenzene and nitrogen oxides using the synthesized Ce0.2TiAlαOx micro/nanomaterial[J]. Catalysis Science & Technology, 2015, 5(2): 1041-1051.
    [18] GAN L N, SHI W B, LI K Z, et al. Synergistic promotion effect between nox and chlorobenzene removal on MnOx-CeO2 catalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30426-30432.
    [19] WANG D, CHEN J J, PENG Y, et al. Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR[J]. Chemical Communications, 2018, 54(16): 2032-2035.
    [20] FAN C, LI K Z, PENG Y, et al. Fe-doped α-MnO2 nanorods for the catalytic removal of NOx and chlorobenzene: the relationship between lattice distortion and catalytic redox properties[J]. Physical Chemistry Chemical Physics, 2019, 21(46): 25880-25888.
    [21] HUANG X, LIU Z, WANG D, et al. The effect of additives and intermediates on vanadia-based catalyst for multi-pollutant control[J]. Catalysis Science & Technology, 2020, 10(2): 323-326.
    [22] HUANG X, WANG D, YANG Q L, et al. Multi-pollutant control (MPC) of NO and chlorobenzene from industrial furnaces using a vanadia-based SCR catalyst[J]. Applied Catalysis B: Environmental, 2021, 285: 119835.
    [23] YUAN X, PENG Y, ZHU X, et al. Anti-poisoning mechanisms of Sb on vanadia-based catalysts for NOx and chlorobenzene multi-pollutant control[J]. Environmental Science & Technology, 2023, 57(28): 10211-10220.
    [24] SONG Z J, YU S X, LIU H, et al. Carbon/chlorinate deposition on MnOx-CeO2 catalyst in chlorobenzene combustion: the effect of SCR flue gas[J]. Chemical Engineering Journal, 2022, 433: 133552.
    [25] SONG Z J, PENG Y, ZHAO X G, et al. Roles of Ru on the V2O5-WO3/TiO2 catalyst for the simultaneous purification of NOx and chlorobenzene: a dechlorination promoter and a redox inductor[J]. ACS Catalysis, 2022, 12(18): 11505-11517.
    [26] WANG J Q, XING Y, SU W, et al. Promotional effect of Sn additive on the chlorine resistance over SnMnOx/LDO catalysts for synergistic removal of NOx and o-DCB Electronic supplementary information (ESI) available.[J]. Catalysis Science & Technology, 2022, 12(12): 3863-3873.
    [27] XING Y, ZHANG H, SU W, et al. Catalytic activity and stability of a Cr modified Co-Fe LDO catalyst in the simultaneous catalytic reduction of NOx and oxidation of o-DCB[J]. New Journal of Chemistry, 2022, 46(18): 8626-8635.
    [28] YANG B, JIN Q J, HUANG Q, et al. Synergetic catalytic removal of chlorobenzene and NOx from waste incineration exhaust over MnNb0.4Ce0.2Ox catalysts: performance and mechanism study[J]. Journal of Rare Earths, 2020, 38(11): 1178-1189.
    [29] YIN R Q, CHEN J J, MI J X, et al. Breaking the activity-selectivity trade-off for simultaneous catalytic elimination of nitric oxide and chlorobenzene via FeVO4-Fe2O3 interfacial charge transfer[J]. ACS Catalysis, 2022, 12(7): 3797-3806.
    [30] 黄旭. 钒基催化剂净化水泥窑烟气多污染物及铊中毒机理研究[D]. 北京:清华大学, 2021.
    [31] 阙正斌, 李德波, 肖显斌,等. 中国垃圾焚烧烟气多污染物协同脱除技术研究进展[J]. 洁净煤技术, 2023,29(6):115-127.
    [32] 赵珍瑶. 低温等离子体在垃圾焚烧烟气治理中的应用[J]. 能源与环境, 2020, (2): 85-86.
    [33] EM Van VELDHUIZEN, ZHOU L M, RUTGERS W R. Combined effects of pulsed discharge removal of NO, SO2, and NH3 from flue gas[J]. J Plasma Chemistry Plasma Processing, 1998, 18: 91-111.
    [34] 张丽军. 低温等离子体协同处理含汞废气和二噁英的研究[D]. 北京:华北电力大学, 2017.
    [35] 皇甫林. 烟气多污染物一体化脱除催化滤芯的制备与性能研究[D]. 北京:中国科学院大学, 2021.
    [36] 竹涛, 张星, 马名烽,等. 气体氛围对低温等离子体协同控制汞和二噁英的影响[J]. 高电压技术, 2019, 45(6): 1907-1914.
    [37] 黄付平, 黄智宁, 谢启军,等. 低温热解耦合高压等离子体技术处理农村生活垃圾工程应用[J]. 环境工程, 2019, 37(5): 196-199.
    [38] 施小东, 翁林钢, 戚科技,等. 一种使用低温等离子体净化垃圾焚烧炉烟气的工艺:CN201811358878.7[P]. 2019.
    [39] 侯海瑞. 催化滤袋在垃圾焚烧烟气多污染物去除中的应用[J]. 化工装备技术, 2022, 43(5): 11-14.
    [40] 邱娟. 锰基催化剂催化降解二噁英及催化滤料性能研究[D]. 杭州:浙江大学, 2022.
    [41] 朱学诚. 适用于过滤催化复合材料的锰基催化剂低温氧化挥发性有机物的机理研究[D]. 杭州:浙江大学,2019.
    [42] KANG M, PARK E D, KIM J M, et al. Simultaneous removal of particulates and NO by the catalytic bag filter containing MnOx catalysts[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 86-89.
    [43] ABUBAKAR A, LI C M, LIN H F, et al. Simultaneous removal of particulates and NO by the catalytic bag filter containing V2O5-MoO3/TiO2[J]. Korean Journal of Chemical Engineering, 2020, 37(4): 633-640.
    [44] YANG B, SHEN Y S, SU Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141.
    [45] 史玉婷, 皇甫林, 李长明,等. V2O5-MoO3/TiO2催化滤袋的制备及中试应用[J]. 化工学报, 2021, 72(11): 5598-5606.
    [46] 单良,尹荣强,王慧,等. VMoTi/玻纤复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021, 72(9): 4892-4899.
    [47] 陈雪红, 郑玉婴, 付彬彬,等. 原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究[J]. 燃料化学学报, 2017, 45(12): 1514-1521.
    [48] 美国戈尔GORE公司官方网站, ‘资源中心-产品案例’ [EB/OL]..
    [49] 李歌, 王宝冬, 马子然,等. 烟气多污染物协同处理催化陶瓷过滤管的研究进展[J]. 化工进展, 2020, 39(8): 3307-3319.
    [50] 武广龙, 赵静, 何海军,等. 陶瓷催化滤管烟气污染物一体化脱除技术研究进展[J]. 能源环境保护, 2020, 34(5): 1-5.
    [51] JEDLICKA F, JECHA D, BEBAR L, et al. Combined flue gas cleaning from persistent organic compounds and nitrogen oxides in the multifunction filter[J]. CET Journal, 2012,29.
    [52] SARACCO G, SPECCHIA S, SPECCHIA V. Catalytically modified fly-ash filters for NOx reduction with NH3[J]. Chemical Engineering Science, 1996, 51(24): 5289-5297.
    [53] SARACCO G, SPECCHIA V. Simultaneous removal of nitrogen oxides and fly-ash from coal-based power-plant flue gases[J]. Applied Thermal Engineering, 1998, 18(11): 1025-1035.
    [54] 张喻升, 李长明, 曾红,等. 钒钨钛/堇青石基烟气脱硝催化陶瓷滤芯的研制[J]. 过程工程学报, 2017, 17(6): 1249-1256.
    [55] HEIDENREICH S, NACKEN M, HACKEL M, et al. Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams[J]. Powder Technology, 2008, 180(1): 86-90.
    [56] CHOI J H, KIM J H, BAK Y C, et al. Pt-V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature[J]. Korean Journal of Chemical Engineering, 2005, 22(6): 844-851.
    [57] SONG Y L, ZHANG Y Z, WU Q W, et al. Experimental study on the desulfurization, denitration, and dust removal characteristics of ceramic fiber filter tubes[J]. Energy & Fuels, 2022, 36(7): 3715-3726.
    [58] 周旭健, 李清毅, 徐灏,等. 固体吸附剂在烟气污染物一体化脱除中的研究评述及展望[J]. 中国电力, 2018(12): 163-169.
    [59] CHI K H, CHANG S H, HUANG C H, et al. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption[J]. Chemosphere, 2006, 64(9): 1489-1498.
    [60] 李帅, 胡红云, 黄永达,等. 垃圾焚烧电厂重金属排放与控制[J]. 能源环境保护, 2023, 37(3): 36-49.
    [61] 林欢. 生活垃圾焚烧发电烟气净化工艺的研究及应用[J]. 中国环保产业, 2019(3): 42-45.
    [62] 蔡晶晶, 周亚东, 张强,等. 活性焦一体化脱硫脱硝烟气净化技术应用[J]. 中国环保产业, 2017(5): 38-41.
    [63] WANG W Y, ZHONG Q, YE Z C, et al. Simultaneous reduction of SO2 and NOx in an entrained-flow reactor[J]. Fuel, 1995, 74(2): 267-272.
    [64] NIU S L, HAN K H, LU C M. Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds[J]. Chemical Engineering Journal, 2011, 168(1): 255-261.
    [65] GHORISHI S, SINGER C F, JOZEWICZ W S, et al. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents[J]. Journal of the Air Waste Management Association, 2002, 52(3): 273-278.
    [66] 孙丽娜, 李凯, 汤立红,等. 常见金属氧化物烟气脱硫研究进展[J]. 化工进展, 2017, 36(1): 181-188.
    [67] 晏振辉. 生活垃圾与危险废物焚烧烟气脱卤技术[J]. 上海建设科技, 2020(4): 78-80,84.
    [68] WANG H, YUAN B, HAO R L, et al. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas[J]. Chemical Engineering Journal, 2019, 378: 122155.
    [69] ZHAO L K,LI C T,WANG Y, et al. Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5WO3/TiO2 catalyst[J]. Catalysis Science & Technology, 2016, 6(15): 6076-6086
    [70] HUTSON N D, KRZYZYNSKA R, SRIVASTAVA R K. Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber[J]. Industrial Engineering Chemistry Research, 2008(16): 47.
    [71] LIU Y X, PAN J F, DU M, et al. Advanced oxidative removal of nitric oxide from flue gas by homogeneous photo-Fenton in a photochemical reactor[J]. 2013, 36(5): 781-787.
    [72] WANG Z H, ZHOU J H, ZHU Y Q, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results[J]. Fuel Processing Technology, 2007, 88(8): 817-823.
    [73] SI T, WANG C B, YAN X N, et al. Simultaneous removal of SO2 and NOx by a new combined spray-and-scattered-bubble technology based on preozonation: from lab scale to pilot scale[J]. Applied Energy, 2019, 242: 1528-1538.
  • 加载中
计量
  • 文章访问数:  29
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回