中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汞氧化催化剂研究进展

史建强 王兵 陈建军 王建成 李俊华

史建强, 王兵, 陈建军, 王建成, 李俊华. 汞氧化催化剂研究进展[J]. 环境工程, 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022
引用本文: 史建强, 王兵, 陈建军, 王建成, 李俊华. 汞氧化催化剂研究进展[J]. 环境工程, 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022
SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022
Citation: SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022

汞氧化催化剂研究进展

doi: 10.13205/j.hjgc.202409022
基金项目: 

国家自然科学基金“纳米铜掺杂锰氧分子筛活性位点调控及其天然气湿气脱汞和再生性能研究”(22078225)

详细信息
    作者简介:

    史建强(1995-),男,博士研究生,主要研究方向为气相汞污染控制。shijianqiang2020@126.com

    通讯作者:

    王建成(1978-),男,教授,主要研究方向为煤转化过程中污染物控制和固废资源化利用研究。wangjiancheng@tyut.edu.cn

    李俊华(1970-),男,教授,主要研究方向为大气污染控制化学及关键控制技术。lijunhua@tsinghua.edu.cn

RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS

  • 摘要: 在全球环境问题日益突出,尤其是对大气汞污染控制的高度重视下,科研人员在针对燃煤烟气及其他工业排放中单质汞(Hg0)脱除技术的研究上取得了显著进步。其中,Hg0氧化催化剂扮演着核心角色,通过催化转化Hg0为易于捕集和处理的二价汞化合物,有效降低了大气中汞排放。尽管该方面已有一定的研究成果,但设计与开发新型高效、稳定且适应复杂工况条件的Hg0氧化催化剂,当前仍面临诸多挑战。系统梳理了Hg0控制技术和几种主要的Hg0氧化催化剂类型(包括分子筛、钙钛矿、贵金属催化剂、过渡金属氧化物和钒基SCR催化剂)、特性和优缺点。并深入探讨了Hg0氧化过程的可能机理,包括均相和多相氧化机制,以及影响Hg0氧化性能的关键因素。该研究结果丰富了汞污染防治的理论基础,也为未来设计更加高效实用的Hg0氧化催化剂提供了参考。
  • [1] GAO Y, ZHANG Z, WU J, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases[J]. Environmental Science & Technology, 2013, 47(19): 10813-10823.
    [2] LIU T, XIONG Z, NI P, et al. Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas, and natural gas[J]. Chemical Engineering Journal, 2023, 454: 140095.
    [3] MCNUTT M. Mercury and health[J]. Science, 2013, 341(6153): 1430.
    [4] WANG C, ZHANG X, MEI J, et al. Outstanding performance of magnetically separable sulfureted MoO3/Fe-Ti spinel for gaseous Hg0 recovery from smelting flue gas: mechanism and adsorption kinetics[J]. Environmental Science & Technology, 2020, 54(12): 7659-7668.
    [5] MACKEY T K, CONTRERAS J T, LIANG B A. The minamata convention on mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal[J]. Science of the Total Environment, 2014, 472: 125-129.
    [6] OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution[J]. Nature, 2017, 547(7662): 201-204.
    [7] 冯新斌, 史建波, 李平, 等. 我国汞污染研究与履约进展[J]. 中国科学院院刊, 2020, 35(11): 1344-1350.
    [8] UNEP. Global Mercury Assessment 2018[M]. Geneva: United Nations Environment Programme Chemicals and Health Branch,2019.
    [9] WU Q, WANG S, LI G, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978—2014[J]. Environmental Science & Technology, 2016, 50(24): 13428-13435.
    [10] HONG Q, XU H, LI J, et al. Adsorption of gaseous mercury for engineering optimization: from macrodynamics to adsorption kinetics and thermodynamics[J]. ACS ES&T Engineering, 2021, 1(5): 865-873.
    [11] SU J, YANG J, ZHANG M, et al. Mechanism of Mo and Sb species improving Hg0 oxidation performance of V2O5/TiO2 catalyst: density function theory study[J]. Applied Surface Science, 2023, 617: 156612.
    [12] YANG Z, LI H, YANG J, et al. Nanosized copper selenide functionalized zeolitic imidazolate framework-8 (CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Advance Functional Materials, 2019, 29(17): 1807191.
    [13] YANG Y, LIU J, ZHANG B, et al. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4[J]. Journal of Hazardous Materials, 2017, 321: 154-161.
    [14] YANG Y, XU W, HUANG R, et al. Enhancement of Hg0 adsorption performance at high temperature using Cu-Zn bimetallic sulfide with elevated thermal stability[J]. Chemical Engineering Journal, 2022, 431: 134028.
    [15] JIANG Z, HU Y, WANG R, et al. Elemental mercury removal over MnO-CoO-modified HZSM-5 adsorbents: performance and characterizations[J]. Journal of the Energy Institute, 2023, 111: 101394.
    [16] ZHU Y, LI C, LYU Y, et al. Insight into the effect of SO2 on the Hg0 removal performance over a 1V-8Ce/AC sorbent at low temperatures[J]. Journal of Hazardous Materials, 2021, 402: 123502.
    [17] ZHOU Z, LIU X, HU Y, et al. An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas[J]. Fuel, 2018, 216: 356-363.
    [18] ZHAO S, PUDASAINEE D, DUAN Y, et al. A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Progress in Energy and Combustion Science, 2019, 73: 26-64.
    [19] LIU D, XU K, MA J, et al. Advances in rational design of catalysts for efficient Hg0 removal[J]. Fuel, 2023, 331: 125922.
    [20] LIU Y, LIU L, WANG Y. A critical review on removal of gaseous pollutants using sulfate radical-based advanced oxidation technologies[J]. Environmental Science & Technology, 2021, 55(14): 9691-9710.
    [21] XU H, HONG Q, LI J, et al. Heterogeneous reaction mechanisms and functional materials for elemental mercury removal from industrial flue gas[J]. ACS ES&T Engineering, 2021, 1(10): 1383-1400.
    [22] PEI H, LI X, SONG Y, et al. LaFeO3 perovskite nanoparticles for efficient capture of elemental mercury from coal-fired flue gas[J]. Fuel, 2022, 309: 122134.
    [23] XU H, MA Y, ZHAO S, et al. Enhancement of Ce1-xSnxO2 support in LaMnO3 for the catalytic oxidation and adsorption of elemental mercury[J]. RSC Advances, 2016, 6(68): 63559-63567.
    [24] CHEN H, HUO Q, WANG Y, et al. Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas[J]. Fuel Processing Technology, 2020, 206.
    [25] LO'PEZ-ANTO'N M A, M DI'AZ-SOMOANO, MARTI'NEZ-TARAZONA M R. Retention of elemental mercury in fly ashes in different atmospheres[J]. Energy & Fuels, 2007, 21: 99-103.
    [26] THOMAS K G, LANIB B W, OFFEN G R. Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Processing Technology, 2007, 89(2): 139-151.
    [27] ZHOU Q, DUAN Y, CHEN M, et al. Effect of flue gas component and ash composition on elemental mercury oxidation/adsorption by NH4Br modified fly ash[J]. Chemical Engineering Journal, 2018, 345: 578-585.
    [28] SERRE S D, SILCOX G D. Adsorption of elemental mercury on the residual carbon in coal fly ash[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1723-1730.
    [29] LIU H, CHEN H, WANG S, et al. Synergistic catalytic oxidation of Hg0 and NH3-SCR of NO over MnCeTiOx catalyst in flue gas[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107574.
    [30] WANG S X, ZHANG L, LI G H, et al. Mercury emission and speciation of coal-fired power plants in China[J]. Atmospheric Chemistry and Physics, 2010, 10: 1183-2010.
    [31] 王青峰, 王丹, 刘越, 等. 湿法烟气脱硫系统中氧化态汞的还原和影响机制综述[J]. 环境工程, 2016, 34(8): 8488.
    [32] LIU Y, WANG Y, WANG Q, et al. A study on removal of elemental mercury in flue gas using Fenton solution[J]. Journal of Hazardous Materials, 2015, 292: 164-172.
    [33] KRZYŻYŃSKA R, HUTSON N D, ZHAO Y, et al. Mercury removal and its fate in oxidant enhanced wet flue gas desulphurization slurry[J]. Fuel, 2018, 211: 876-882.
    [34] CHANG L, ZHANG Y, LIU H, et al. Migration and identification of mercury species in wet flue gas desulfurization system using temperature programmed decomposition[J]. Journal of Cleaner Production, 2020, 276: 124211.
    [35] DRANGA B A, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases: a review[J]. Catalysts, 2012, 2(1): 139-170.
    [36] SHI J, CHEN J, XIONG S, et al. Structure-directing role of support on Hg0 oxidation over V2O5/TiO2 catalyst revealed for NOx and Hg0 simultaneous control in an SCR reactor[J]. Environmental Science & Technology, 2022, 56(13): 9702-9711.
    [37] WANG C, HONG Q, MA C, et al. Novel promotion of sulfuration for Hg0 conversion over V2O5-MoO3/TiO2 with HCl at low temperatures: Hg0 adsorption, Hg0 oxidation, and Hg2+ adsorption[J]. Environmental Science & Technology, 2021, 55(10): 7072-7081.
    [38] ZHANG X, FANG B, CUI L, et al. Effects of HCl and O2 on Hg0 oxidation in the SCR catalyst[J]. Energy & Fuels, 2021, 35(14): 11382-11392.
    [39] ZHANG X, GAO C, WANG Z, et al. Co3O4 with ordered pore structure derived from wood vessels for efficient Hg0 oxidation[J]. Chinese Journal of Chemical Engineering, 2022, 50: 215-221.
    [40] WANG D, CHEN Q, ZHANG X, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: a critical review[J]. Environmental Science & Technology, 2021, 55(5): 2743-2766.
    [41] WANG Y, SI W, PENG Y, et al. Investigation on removal of NO and Hg0 with different Cu species in Cu-SAPO-34 zeolites[J]. Catalysis Communications, 2019, 119: 91-95.
    [42] WANG T, LIU J, YANG Y, et al. Catalytic conversion of mercury over Ce doped Mn/SAPO-34 catalyst: sulphur tolerance and SO2/SO3 conversion[J]. Journal of Hazardous Materials, 2020, 381: 120986.
    [43] LIU X, MI J, SHI L, et al. In situ modulation of A-site vacancies in LaMnO3.15 perovskite for surface lattice oxygen activation and boosted redox reactions[J]. Angewandte Chemie International Edition, 2021, 60(51): 26747-26754.
    [44] WANG Z, LIU J, YANG Y, et al. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl[J]. Journal of Hazardous Materials, 2020, 383: 121156.
    [45] XU H, QU Z, ZHAO S, et al. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide[J]. Chemical Engineering Journal, 2016, 292: 123-129.
    [46] XU H, QU Z, ZONG C, et al. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Applied Catalysis B: Environmental, 2016, 186: 30-40.
    [47] YANG J, NA Y, HU Y, et al. Granulation of Mn-based perovskite adsorbent for cyclic Hg0 capture from coal combustion flue gas[J]. Chemical Engineering Journal, 2023, 459: 141679.
    [48] MHATRE D, BHATIA D. Insights into the adsorption, alloy formation, and poisoning effects of Hg on monometallic and bimetallic adsorbents[J]. Langmuir, 2022, 38(22): 6841-6859.
    [49] HUO Q, YUE C, WANG Y, et al. Effect of impregnation sequence of Pd/Ce/gamma-Al2O3 sorbents on Hg0 removal from coal derived fuel gas[J]. Chemosphere, 2020, 249: 126164.
    [50] LIM D H, ABOUD S, WILCOX J. Investigation of adsorption behavior of mercury on Au(111) from first principles[J]. Environmental Science & Technology, 2012, 46(13): 7260-7266.
    [51] LIU Z, SRIRAM V, LI C, et al. Mechanistic and kinetic studies of elemental mercury oxidation over a RuO2/rutile TiO2 catalyst[J]. Catalysis Science & Technology, 2017, 7(20): 4669-4679.
    [52] YAN N, CHEN W, CHEN J, et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environmental Science & Technology, 2011, 45(13): 5725-5730.
    [53] YANG Y, LIU J, WANG Z, et al. A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst[J]. Journal of Hazardous Materials, 2019, 373: 660-670.
    [54] ZHAO L, LI C, ZHANG X, et al. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catalysis Science & Technology, 2015, 5(7): 3459-3472.
    [55] LI H, WU C Y, LI Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B: Environmental, 2012, 111-112: 381-388.
    [56] YANG Y, MIAO S, LIU J, et al. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environmental Science & Technology, 2019, 53(16): 9957-9965.
    [57] LI B, HOU Y, GAO J, et al. Rational amelioration of redox equilibrium by constructing hollow nanotube Co-Mn/TiO2 catalyst to boost simultaneous removal of NO and Hg0[J]. Applied Catalysis B: Environmental, 2024, 341: 123353.
    [58] LI C, YUE E, WU J, et al. Copper-based sorbents and catalysts for elemental mercury removal from gas stream: a review[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 12829-12844.
    [59] LI H, WU S, LI L, et al. CuO-CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures[J]. Catalysis Science & Technology, 2015, 5(12): 5129-5138.
    [60] WANG H, WANG B, ZHOU J, et al. CuO modified vanadium-based SCR catalysts for Hg0 oxidation and NO reduction[J]. Journal of Environmental Management, 2019, 239: 17-22.
    [61] YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology, 2008, 180(1/2): 222-226.
    [62] MEI Z, SHEN Z, ZHAO Q, et al. Removing and recovering gas-phase elemental mercury by CuxCo3-xO4 (0.75≤x≤2.25) in the presence of sulphur compounds[J]. Chemosphere, 2008, 70(8): 1399-1404.
    [63] SRIRAM V, LI C, LIU Z, et al. Reaction kinetic study of elemental mercury vapor oxidation with CuCl2[J]. Chemical Engineering Journal, 2018, 343: 244-257.
    [64] KONG F, QIU J, LIU H, et al. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. Journal of Environmental Sciences, 2011, 23(4): 699-704.
    [65] WANG D, YAO Q, LIU S, et al. Effect of support on simultaneous removal of NO and Hg0 over Cu and Fe catalysts[J]. Journal of the Energy Institute, 2019, 92(6): 1852-1863.
    [66] LI H, WU C Y, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219: 319-326.
    [67] LI H, WU C Y, LI Y, et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011, 45(17): 7394-7400.
    [68] CHANG H, WU Q, ZHANG T, et al. Design strategies for CeO2-MoO3 catalysts for deNOx and Hg0 oxidation in the presence of HCl: the significance of the surface acid-base properties[J]. Environmental Science & Technology, 2015, 49(20): 12388-12394.
    [69] WANG Y, SHEN B, HE C, et al. Simultaneous removal of NO and Hg0 from flue gas over Mn-Ce/Ti-PILCs[J]. Environmental Science & Technology, 2015, 49(15): 9355-9363.
    [70] CHEN C, JIA W, LIU S, et al. Simultaneous NO removal and Hg0 oxidation over CuO doped V2O5-WO3/TiO2 catalysts in simulated coal-fired flue gas[J]. Energy & Fuels, 2018, 32(6): 7025-7034.
    [71] MEI J, SUN P, XIAO X, et al. Influence mechanism of the compositions in coal-fired flue gas on Hg0 oxidation over commercial SCR catalyst[J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 130-137.
    [72] SHIN D, KIM M H, HAN J W. Structure-activity relationship of VOx/TiO2 catalysts for mercury oxidation: a DFT study[J]. Applied Surface Science, 2021, 552: 149462.
    [73] YANG Y, XU W, WANG J, et al. New insight into simultaneous removal of NO and Hg0 on CeO2-modified V2O5/TiO2 catalyst: a new modification strategy[J]. Fuel, 2019, 249: 178-187.
    [74] LIU R, XU W, TONG L, et al. Mechanism of Hg0 oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst[J]. Journal of Environmental Sciences, 2015, 36: 76-83.
    [75] ZHAO H, EZEH C I, YIN S, et al. MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+[J]. Applied Catalysis B: Environmental, 2020, 263: 117829.
    [76] ZHAO L, LI C, LI S, et al. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2016, 198: 420-430.
    [77] LI C, BREWE D, LEE J Y. Effects of impregnation sequence for Mo-modified V-based SCR catalyst on simultaneous Hg0 oxidation and NO reduction[J]. Applied Catalysis B: Environmental, 2020, 270: 118854.
    [78] SHAN W, YU Y, ZHANG Y, et al. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3[J]. Catalysis Today, 2021, 376: 292-301.
    [79] SHI J, CHEN J, WANG J, et al. Vanadium-density-dependent reactivity for simultaneous removal of NOx and Hg0 over V2O5/TiO2 catalyst[J]. Fuel, 2023, 332: 126189.
    [80] LI C, SRIRAM V, LEE J Y. A kinetic study of Hg0 oxidation over Mo-promoted V-based SCR catalyst[J]. Chemical Engineering Journal, 2022, 427: 131864.
    [81] YEO W, SHIN D, KIM M H, et al. Change in the electronic environment of the VOx active center via support modification to enhance Hg oxidation activity[J]. ACS Catalysis, 2023, 13: 3775-3787.
    [82] SU J, YANG J, ZHANG M, et al. Improvement mechanism of Ru species on Hg0 oxidation reactivity over V2O5/TiO2 catalyst: a density functional theory study[J]. Chemical Engineering Science, 2023, 274: 118689.
    [83] ZHAO L, LI C, ZHANG J, et al. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015, 153: 361-369.
    [84] ZHAO L, LI C, LI S, et al. Simultaneous removal of Hg0 and NO in simulated flue gas on transition metal oxide M' (M'=Fe2O3, MnO2, and WO3) doping on V2O5/ZrO2-CeO2 catalysts[J]. Applied Surface Science, 2019, 483: 260-269.
    [85] WANG H, WANG B, SUN Q, et al. New insights into the promotional effects of Cu and Fe over V2O5-WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0[J]. Catalysis Communications, 2017, 100: 169-172.
    [86] CHEN C, JIA W, LIU S, et al. Catalytic performance of CuCl2-modified V2O5-WO3/TiO2 catalyst for Hg0 oxidation in simulated flue gas[J]. Korean Journal of Chemical Engineering, 2018, 35(3): 637-644.
    [87] ZHAO L, HE Q S, LI L, et al. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5): 628-634.
    [88] 杨子文, 佟莉, 左朋莱, 等. 不同烟气组分对Cu2O改性V2O5-MoO3/TiO2脱硝催化剂汞氧化性能的影响[J]. 环境工程学报, 2022, 16(9): 2911-2920.
    [89] SHI J, WANG Z, MI J, et al. To be support or promoter: the mode of introducing ceria into commercial V2O5/TiO2 catalyst for enhanced Hg0 oxidation[J]. Journal of Hazardous Materials, 2023, 454: 131489.
    [90] LIU R, XU W, TONG L, et al. Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J]. Journal of Environmental Sciences, 2015, 38: 126-132.
    [91] WANG Z, LIU J, ZHANG B, et al. Mechanism of heterogeneous mercury oxidation by HBr over V2O5/TiO2 catalyst[J]. Environmental Science & Technology, 2016, 50(10): 5398-5404.
    [92] CHIU C H, HSI H C, LIN HP, et al. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO[J]. Journal of Hazardous Materials, 2015, 291: 1-8.
    [93] YANG J, SU J, CHEN L, et al. Mercury removal using various modified V/Ti-based SCR catalysts: a review[J]. Journal of Hazardous Materials, 2022, 436: 129115.
    [94] SUAREZ NEGREIRA A, WILCOX J. DFT study of Hg oxidation across vanadia-titania SCR catalyst under flue gas conditions[J]. The Journal of Physical Chemistry C, 2013, 117(4): 1761-1772.
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-23
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回