CHARACTERIZATION OF SUMMER GREENHOUSE GAS EMISSIONS FROM SEPTIC TANKS AND MEASUMENT OF CH4 EMISSION FACTORS
-
摘要: 化粪池是城市粪便污水系统温室气体的主要排放源,但目前人们对化粪池温室气体的排放特征仍不太了解,碳排放核算也缺乏基础参数。夏季是化粪池温室气体排放的主要季节,通过试验模拟了华北某小区夏季化粪池对实际生活污水的厌氧降解过程,考察了温室气体的排放特征和影响因素,并测算了该小区化粪池的CH4排放因子。结果表明,25~28 ℃时,模拟化粪池系统对COD和VFA的去除率分别为53.4%~76.9%和13.6%~24.9%,其CH4和CO2排放强度分别为3.1~8.1 mg/L和10.3~16.7 mg/L;化粪池对COD的去除率随化粪池底部沉积物的增多、进水水量降低及水温的升高而增大,CH4排放强度呈现相同的规律,沉积物高度、进水流量对化粪池CO2的排放强度影响较小,但是水温升高后CO2的排放强度将明显增加;化粪池排放的CH4主要以气态形式存在于反应器的顶部空间,CO2主要溶解于液相,随水流排出;在28 ℃和25 ℃条件下,化粪池去除单位质量(1 kg) COD产生的CH4量分别为0.103 kg和0.077 kg,排放的CH4量分别为0.029 kg和0.021 kg,居民人均CH4产量分别为12.36 g CH4/(cap·d)和9.24 g CH4/(cap·d)。Abstract: Septic tanks are the main source of greenhouse gas emissions from urban fecal and sewage systems, but the emission characteristics of greenhouse gases from septic tanks are still poorly understood, and carbon emission accounting lacks basic parameters. Summer is the prime season for GHG emissions from septic tanks. In this study, the anaerobic degradation process of actual domestic wastewater from septic tanks in summer in a community in North China was simulated through experiments to investigate the GHG emission characteristics and influencing factors, and the CH4 emission factor of septic tanks in this community was measured. The results showed that the removal rates of COD and VFA in the simulated septic tank were 53.4% to 76.9%, and 13.6% to 24.9%, respectively, when the water temperature was 25 to 28 ℃, and its CH4 and CO2 emission intensities were 3.1 to 8.1 mg/L and 10.3 to 16.7 mg/L, respectively. The removal of COD by septic tanks increased with the increase of sediment mass in the septic tanks, the decrease of influent flow and the increase of water temperature, and CH4 emission intensity showed the same trends. However, the sediment mass and influent flow had less influence on CO2 emission intensity from the septic tank, but CO2 emission intensity increased significantly when the water temperature increased. CH4 emitted from the septic tank mainly existed in the headspace of the reactor. While CO2 was mainly dissolved in the liquid and discharged with the effluent. The CH4 production by the septic tanks to remove 1 kg of COD was 0.103 kg and 0.077 kg, respectively under the conditions of 28 ℃ and 25 ℃, and the amount of CH4 discharged was 0.029 kg and 0.021 kg, respectively, and the average CH4 production rates were 12.36 g CH4/(cap·d) and 9.24 g CH4/(cap·d), respectively.
-
Key words:
- septic tanks /
- greenhouse gases /
- sediment /
- emission characterization /
- CH4 emission factors
-
[1] 郝晓地, 杨文宇, 林甲. 不可小觑的化粪池甲烷碳排量[J]. 中国给水排水,2017(10):28-33. [2] 国家卫生健康委员会.中国卫生健康统计年鉴[M]. 北京:中国协和医科大学出版社,2018. [3] 夏琼琼, 李鹏峰, 郑兴灿, 等. 城镇高质量发展背景下化粪池取舍的探讨[J]. 中国市政工程,2024(2): 51-54. [4] 黄守渤. 关于城市排水系统中取消化粪池的探讨[J]. 广东化工,2023,50(12):186-188. [5] 王立东, 刘德明, 马世斌, 等. 改进型农村三格化粪池的污水处理性能[J]. 环境工程学报,2020,14(10): 2831-2836. [6] 唐柏杨, 宣干, 杨诗瑶, 等. 重新审视化粪池的温室效应:回顾与展望[J]. 环境工程,2023,41(7):14-21. [7] 程世昆, 龙锦云, BARBARA E, 等. 不可忽视的无下水道卫生系统温室气体排放[J]. 环境卫生工程,2022,30(6): 112-112. [8] 颜山脊, 湛宇辰, 方蔼琳, 等. 化粪池对城市排水系统水质水量及H2S排放的影响[J]. 应用化工,2024,53(4):869-872. [9] 洛噶, 周作勇, 赵冬泉, 等. 某住宅区化粪池H2S排放特征与影响因素[J]. 中国给水排水,2022,38(13):1-7. [10] 伍彬, 张鸣, 李一平, 等. 华南地区城镇居民生活污水排放规律及污染物排放量[J]. 环境工程,2022,40(12):196-201,280. [11] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[S]. 2019. [12] JIANG G, SUN J, SHARMA K R, et al. Corrosion and odor management in sewer systems[J]. Current Opinion in Biotechnology,2015,33:192-197. [13] 丁慧, 关华滨, 陈志强. 寒冷地区化粪池的效果评价和探讨[J]. 环境科学与管理,2012,37(8):78-82. [14] 王红燕, 李杰, 王亚娥, 等. 化粪池污水处理能力研究及其评价[J]. 兰州交通大学学报,2009,28(1):118-120,124. [15] 郑可, 付洁, 李一平. 基于南方城市化粪池前后水质变化特征的若干思考[J]. 给水排水,2023,49(10):20-27. [16] 魏亮亮, 李健菊, 陈颜, 等. 公共建筑、化粪池设置及管道传输对城市生活污水水质参数的影响分析[J]. 给水排水,2020,46(增刊2):155-166. [17] UEMURA S, HARADA H. Treatment of sewage by a UASB reactor under moderate to low temperature conditions[J]. Bioresource Technology, 2000, 72(3): 275-282. [18] VIEIRA S M M, SOUZA M E. Development of technology for the use of the UASB reactor in domestic sewage treatment[J]. Water Science & Technology,1986, 18(12): 109-121. [19] LI N, HE L, LU Y Z, et al. Robust performance of a novel anaerobic biofilm membrane bioreactor with mesh filter and carbon fiber (ABMBR) for low to high strength wastewater treatment[J]. Chemical Engineering Journal, 2017, 313: 56-64. [20] RENUKA R, MOHAN S M, SOWMIYA B, et al. Performance evaluation of panelled anaerobic baffle-cum-filter reactor in treating municipal wastewater[J]. Ecological Engineering, 2016, 97:1-12. [21] TOPRAK H. Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond[J]. Water Research,1995,29(4):1111-1119. [22] 苑心, 李轩, 胡言午, 等. 隐形的地下碳源:城市排水管道CH4排放[J]. 给水排水,2022,48(9):139-146. [23] 郝晓地, 杨振理, 张益宁, 等. 排水管道中CH4、H2S与N2O的产生机制及其控制策略[J]. 环境工程学报,2023,17(1):1-12. [24] 孙永利, 张维, 郑兴灿, 等. 城镇居民人均日生活污水污染物产生量测算之产污规律[J]. 中国给水排水, 2020,36(6):1-6. [25] JAKPONG M, LOI T H, MARIANE Y S, et al. Challenges to accurate estimation of methane emission from septic tanks with long emptying intervals[J]. Environmental Science and Technology,2023,57:16575-16584. [26] SHAW K, KENNEDY C, DOREA C C. Non-sewered sanitation systems’ global greenhouse gas emissions: balancing sustainable development goal tradeoffs to end open defecation[J]. Sustainability,2021,13,11884. [27] HUYNHL T, HARADA H, FUJII S, et al. Greenhouse gas emissions from blackwater septic systems[J]. Environmental Science and Technology,2021,55(2):1209-1217.
点击查看大图
计量
- 文章访问数: 17
- HTML全文浏览量: 2
- PDF下载量: 1
- 被引次数: 0