APPLICATION AND PROSPECTS OF PYROLYSIS CARBONIZATION TECHNOLOGY IN SLUDGE TREATMENT
-
摘要: 随着我国城市化水平的不断提升,污水厂产生的污泥量目前已位居世界首位。作为一项新兴处理技术,污泥热解炭化有着低污染、低排放、高资源回收性的特点,可助力城镇供排水系统实现节能减碳与绿色发展目标。对我国热解技术的政策发展历程及标准化工作进行了总结,系统性综述了影响污泥热解炭化过程的关键因子及响应机制,并对热解炭化过程中污染物的迁移转化规律进行了探讨,明确了热解炭化可实现重金属的钝化、抗生素抗性基因和微塑料等新污染物的削减。热解炭化前合适的预处理方式可以减少污泥热解过程中NOx、SOx等污染物前驱体的生成。微波辅助热解及污泥与其他生物质共热解的相关研究,为污泥炭化提供了创新思路。污泥热解炭经改性处理可用作吸附剂、催化剂和土壤改良剂等高值化资源产品。我国目前已经建设起诸多污泥热解炭化的典型工程案例,对于污泥炭化的进一步推广具有重要指导意义。但现有污泥热解装备仍存在传质效率低等问题,亟需进一步创新研发,标准规范方面需要进一步完善相关的运行与环评导则、污染物控制与产物质量标准、价格机制等。Abstract: As urbanization in China continues to advance, the volume of sewage sludge produced by wastewater treatment plants ranks among the highest globally. As an emerging treatment technology, sludge thermal pyrolysis carbonization offers characteristics of low pollution, low emissions, and high resource recovery potential, thus aiding in the achievement of energy efficiency, carbon reduction, and sustainable development goals for urban water supply and drainage systems. This paper summarizes the policy development trajectory and standardization efforts pertaining to thermal pyrolysis technology in China. It systematically reviews the key factors and response mechanisms influencing the process of sludge thermal pyrolysis carbonization and explores the migration and transformation patterns of pollutants during this process. It is elucidated that thermal pyrolysis carbonization can effectively passivate heavy metals and reduce emerging pollutants, such as antibiotic-resistant genes and microplastics. Appropriate pretreatment methods prior to thermal pyrolysis carbonization can mitigate the generation of precursor pollutants, such as NOx and SOx during sludge carbonization. Research on microwave-assisted pyrolysis and co-pyrolysis of sludge with other biomasses provides innovative approaches for sludge carbonization. Modified sludge subjected to thermal pyrolysis carbonization can serve as high-value resource products, including adsorbents, catalysts, and soil amendments. China has already established numerous exemplary engineering projects involving sludge thermal pyrolysis carbonization, which hold significant guidance for further advancement of sludge carbonization practices. However, the existing sludge thermal pyrolysis equipment still faces challenges such as low mass transfer efficiency, necessitating further innovation and development. Moreover, in terms of standardization, there is a need for further refinement of related operational and environmental assessment guidelines, pollutant control measures, product quality standards and pricing mechanisms.
-
[1] 邹正康. 市政污泥热化学转化技术研究进展[J]. 能源环境保护, 2023:110-120. [2] 黄艳琴,甄宇航,王晨州,等. "双碳"背景下市政污泥热解资源化利? 研究进展[J]. 材料导报, 2023:29-34. [3] 徐智明, 汪帅马. 江西省城镇污泥处理处置现状及建议[J]. 能源研究与管理, 2021(3): 104-108. [4] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5. [5] 国家发展改革委,住房城乡建设部. 城镇生活污水处理设施补短板强弱项实施方案[Z].2020. [6] EGLE L, RECHBERGER H, KRAMPE J, et al. Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies[J]. The Science of the Total Environment, 2016, 571(nov.15): 522-542. [7] 赵莹莹, 赵青玲. 污泥资源化利用技术的研究进展[J]. 能源研究与利用, 2023(5): 40-44. [8] 崔燕妮. 污水污泥微波热解产生NH3和HCN污染控制研究[D]. 哈尔滨:哈尔滨工业大学, 2014. [9] 王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 1922-1930. [10] 杨天华, 佟瑶, 翟英媚, 等. 碳中和愿景下有机固废热转化清洁利用技术研究现状与展望[J]. 洁净煤技术, 2024, 30(3): 29-51. [11] 郭盛杰, 黄海伟, 董欣, 等. 中国城镇污水处理行业温室气体排放核算及其时空特征分析[J]. 给水排水, 2019, 55(4): 56-62. [12] 易碳家. 《新兴经济体二氧化碳排放报告2023》全文[Z]. 2024. [13] 陆家缘. 中国污水处理行业碳足迹与减排潜力分析[D]. 合肥:中国科学技术大学, 2019. [14] 王洪臣. 我国城镇污水处理行业碳减排路径及潜力[J]. 给水排水, 2017, 53(3): 1-3, 73. [15] 刘善军, 马雪研, 刘雪洁, 等. 济南市某污水处理厂碳排放评估与分析[J]. 环境污染与防治, 2023, 45(12): 1732-1736, 42. [16] PRASPALIAUSKAS M, PEDIIUS N, STRIUGAS N. Elemental migration and transformation from sewage sludge to residual products during the pyrolysis process[J]. Energy Fuels, 2018,32(4):5199-5208. [17] 张曌. 污泥热解工艺机理与碳排放研究[D]. 哈尔滨:哈尔滨工业大学, 2012. [18] 张山, 李宁, 黄婷, 等. 双碳背景下市政污泥协同处置技术路径碳足迹分析[J]. 给水排水, 2023, 59(11): 32-39. [19] 王琳, 李德彬, 刘子为, 等. 污泥处理处置路径碳排放分析[J]. 中国环境科学, 2022, 42(5): 2404-2412. [20] 杨凯. 城市污泥热解过程中的热分析及热解气的净化[D]. 秦皇岛:燕山大学, 2019. [21] 资源节约和环境保护司. 国家发展改革委、农业部关于印发编制秸秆综合利用规划的指导意见的通知[Z]. 2009. [22] 办公厅. 中华人民共和国国家发展和改革委员会令第9号 产业结构调整指导目录(2011年本)[Z]. 2011. [23] 农业农村部. 农业部关于印发《病死动物无害化处理技术规范》的通知[Z]. 2013. [24] 工业和信息化部网站. 工信部发意见加快推进环保装备制造业发展[Z]. 2017. [25] 住房城乡建设部. 关于政协十三届全国委员会第一次会议第1657号(资源环境类101号)提案答复的函[Z]. 2018. [26] 原子能机构网站. 我国成功掌握低放有机废液热解焚烧技术[Z]. 2019. [27] 农业农村部. 农业农村部办公厅 国家发展改革委办公厅 关于印发《秸秆综合利用技术目录(2021)》的通知[Z]. 2021. [28] 中华人民共和国生态环境部. 关于征集 无废城市 先进适用技术(第二批)的通知[Z]. 2022. [29] 农业农村部规划设计研究院, 农业农村部农业生态与资源保护总站, 中国农业科学院农业环境与可持续发展研究所, 等. 秸秆热解炭化多联产工程技术标准[Z]. 中华人民共和国住房和城乡建设部;国家市场监督管理总局. 2022: 68. [30] ZHAO H Y, JIA J W, ZHANG F, et al. Characterization of the products obtained by pyrolysis of oil sludge with steel slag in a continuous pyrolysis-magnetic separation reactor[J]. Fuel, 2019,255(1):115711. [31] RACEK J, SEVCIK J, CHORAZY T, et al. Biochar-recovery material from pyrolysis of sewage sludge: a review[J]. Waste and Biomass Valorization, 2019, 11(7): 3677-3709. [32] 王宏. 污水污泥热解技术研究现状[J]. 中国科技期刊数据库 工业 A, 2023(6):197-202. [33] SYED-HASSAN S S A, WANG Y, HU S, et al. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 888-913. [34] 戴财胜, 侯俊威, 樊文帅, 等. 低温快速热解条件下城市污泥热解炭的燃烧性能及其影响因素研究[J]. 环境工程, 2023, 41(增刊2): 558-561, 67. [35] CHANAKA UDAYANGA W D, VEKSHA A, GIANNIS A, et al. Pyrolysis derived char from municipal and industrial sludge: impact of organic decomposition and inorganic accumulation on the fuel characteristics of char[J]. Waste Management, 2019, 83: 131-141. [36] BUSS W. Pyrolysis solves the issue of organic contaminants in sewage sludge while retaining carbon—making the case for sewage sludge treatment via pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(30): 10048-10053. [37] MOŠKO J, POHOŘELÝ M, CAJTHAML T, et al. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge[J]. Chemosphere, 2021, 265. [38] 张泽华. 中药渣协同城市污泥制备生物质燃料[D]. 湘潭:湖南科技大学, 2021. [39] 彭成法, 肖汀璇, 李志建. 热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究, 2017, 30(10): 1637-1644. [40] MARÍA A M, FONTS I, LÁZARO L, et al. Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor[J]. Chemical Engineering Journal, 2015,259:467-480. [41] 霍建宝. 污泥与秸秆共热解特性及固体产物的燃烧特性研究[D]. 吉林:东北电力大学, 2023. [42] ZHENG A, LI L, TIPPAYAWONG N, et al. Reducing emission of NOx and SOx precursors while enhancing char production from pyrolysis of sewage sludge by torrefaction pretreatment[J]. Energy, 2020, 192:116620. [43] 陈冠益, 方梦祥, 骆仲泱, 等. 生物质固定床热解特性的试验研究与分析[J]. 太阳能学报, 1999(2): 15-22. [44] SHAHRAKI S, MIRI M, MOTAHARI-NEZHAD M. Experimental analysis of pyrolysis of sewage sludge[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(17): 2037-2043. [45] KARACA C, SÖZEN S, ORHON D, et al. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery[J]. Waste Management, 2018, 78: 217-226. [46] LU H, ZHANG W, SHIZHONGWANG, et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures[J]. Journal of Analytical & Applied Pyrolysis, 2013, 102(7): 137-143. [47] CHEN T, ZHANG Y, WANG H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresour Technol, 2014, 164: 47-54. [48] SOUZA C D S, BOMFIM M R, ALMEIDA M D C D, et al. Induced changes of pyrolysis temperature on the physicochemical traits of sewage sludge and on the potential ecological risks[J].Springer Science and Business Media LLC, 2021(1). DOI: 10.1038/S41598-020-79658-4. [49] ZOGHLAMI R I, HECHMI S, WEGHLANI R, et al. Biochar derived from domestic sewage sludge: influence of temperature pyrolysis on biochars’ chemical properties and phytotoxicity[J]. Journal of Chemistry, 2021: 1-10. [50] FIGUEIREDO C, LOPES H, COSER T, et al. Influence of pyrolysis temperature on chemical and physical properties of biochar from sewage sludge[J]. Archives of Agronomy and Soil Science, 2017, 64(6): 881-889. [51] ANTUNES E, SCHUMANN J, BRODIE G, et al. Biochar produced from biosolids using a single-mode microwave: characterisation and its potential for phosphorus removal[J]. Journal of Environmental Management, 2017, 196(JUL.1): 119-126. [52] SHEN L, ZHANG D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed[J]. Fuel, 2003,82(4):465-472. [53] 翟云波. 基于化学活化法的污泥衍生吸附剂的制备及应用基础理论研究[D]. 长沙:湖南大学, 2005. [54] 李颖. 城市污泥热化学处理固体产物分析及多环芳烃的分布与转化[D]. 长沙:湖南大学, 2019. [55] GERASIMOV G, KHASKHACHIKH V, POTAPOV O, et al. Pyrolysis of sewage sludge by solid heat carrier[J]. Waste Management, 2019, 87: 218-227. [56] 邢亚彬. 石化企业剩余活性污泥基活性炭制备及应用研究[D]. 青岛:中国石油大学(华东), 2023. [57] 彭勃. 工业污泥与生物质共热解制炭及其重金属固化特性研究[D]. 南京:东南大学, 2022. [58] HAN R, LIU J, ZHAO C, et al. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: effect of particle size and moisture content on product yields and syngas composition[J]. Waste Management & Research, 2016, 34(6): 572-577. [59] JIN H, ARAZO R O, GAO J, et al. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 168-175. [60] SEVCIK J, RACEK J, HLUSTIK P, et al. Microwave pyrolysis full-scale application on sewage sludge[J]. Desalination and water treatment, 2018, 112(APR.): 161-170. [61] 程俊, 何光亚, 张娜. 污泥高干脱水和热解炭化组合工艺的应用[J]. 智能城市, 2018, 4(14): 89-90. [62] 林志. 热解炭化生物质废弃物中重金属钝化与抗生素抗性基因消除及其土壤植物效应研究[D]. 南京:南京农业大学, 2023. [63] 王犇, 贾伟丽, 吴颖琳, 等. 低温热解对有机肥中抗生素及抗性基因的消减研究[J]. 生态毒理学报, 2023, 18(1): 88-100. [64] 邱良祝, 朱脩玥, 马彪, 等. 生物质炭热解炭化条件及其性质的文献分析[J]. 植物营养与肥料学报, 2017, 23(6): 1622-1630. [65] 陈同斌, 黄启飞, 高定, 等. 中国城市污泥的重金属含量及其变化趋势[J]. 环境科学学报, 2003(5): 561-569. [66] 陈昊楠, 金潇, 银正一, 等. 污泥热解炭化工程污泥炭重金属含量及形态特征分析[J]. 给水排水, 2023, 59(5): 32-6, 55. [67] KO J H, WANG J, XU Q. Characterization of particulate matter formed during sewage sludge pyrolysis-ScienceDirect[J]. Fuel, 2018, 224: 210-218. [68] XIA Y, TANG Y, SHIH K, et al. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis[J]. 2020,382(15):121110.1-121110.8. [69] 王超前. 污水污泥微波诱导协同炭化及重金属固化研究[D]. 济南:山东大学,2021. [70] CHEN H, NAMIOKA T, YOSHIKAWA K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Applied Energy, 2011, 88(12): 5032-5041. [71] LIU H, ZHANG Q, HU H, et al. Dual role of conditioner CaO in product distributions and sulfur transformation during sewage sludge pyrolysis[J]. Fuel, 2014, 134: 514-520. [72] YUAN H, LI C, SHAN R Z J C Y. Nitrogen-containing species evolution during co-pyrolysis of gentamicin residue and biomass[J]. Journal of Analytical & Applied Pyrolysis, 2023, 169(Jan): 105812.1-105812.9. [73] 黄鑫. 污水污泥快速热解制备生物油及化学品[D]. 徐州:中国矿业大学, 2017. [74] ZHAN H, ZHUANG X, SONG Y, et al. Evolution of nitrogen functionalities in relation to NOx precursors during low-temperature pyrolysis of biowastes[J]. Fuel, 2018, 218(APR.15): 325-334. [75] DJANDJA O S, WANG Z-C, WANG F, et al. Pyrolysis of municipal sewage sludge for biofuel production: a review[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 16939-16956. [76] GU B, CAO J P, WEI F, et al. Nitrogen migration mechanism and formation of aromatics during catalytic fast pyrolysis of sewage sludge over metal-loaded HZSM-5[J]. Fuel, 2019, 244(MAY 15): 151-158. [77] HU M, MA J, JIANG Z, et al. New insights into nitrogen control strategies in sewage sludge pyrolysis toward environmental and economic sustainability[J]. Science of The Total Environment, 2023, 882. [78] XU L, CHENG J H, MA X Q, et al. Transformation of the sulfur element during pyrolysis of sewage sludge at low temperatures[J]. Energy & Fuels, 2020, 35(1): 501-509. [79] 莫测辉, 蔡全英, 吴启堂, 等. 我国一些城市污泥中多环芳烃(PAHs)的研究[J]. 环境科学学报, 2001, (5): 613-618. [80] MAGDALENA, STEFANIUK, PATRYK, et al. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil[J]. Environmental Pollution, 2016, 218(Nov.): 242-251. [81] HARRISON E Z, OAKES S R, HYSELL M, et al. Organic Chemicals in Sewage Sludges[J]. Science of the Total Environment, 2006, 367(2/3): 481. [82] 邢世友, 袁浩然, 鲁涛, 等. 污泥处置过程中主要有机污染物生成及迁移转化规律[J]. 武汉大学学报(工学版), 2012, 45(6): 848-854. [83] XING J, XU G, LI G. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111756. [84] VITERI F, SALINAS J, MILLERA, et al. Pyrolysis of dimethyl carbonate: PAH formation[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 524-530. [85] WANG Y, RAJ A, CHUNG S H. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames[J]. Combustion & Flame, 2013, 160(9): 1667-1676. [86] JIN H, CUOCI A, FRASSOLDATI A, et al. Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol[J]. Combustion & Flame, 2014, 161(3): 657-670. [87] 胡艳军, 余帆, 陈江, 等. 污泥热解过程中多环芳烃排放规律[J]. 化工学报, 2018, 69(8): 3662-3669. [88] ZHANG B, XIONG S, XIAO B, et al. Mechanism of wet sewage sludge pyrolysis in a tubular furnace[J]. International Journal of Hydrogen Energy, 2011, 36(1): 355-363. [89] 翟云波, 刘强, 李彩亭, 等. 粒径对污水污泥低温热解产物油特性影响研究[J]. 湖南大学学报(自然科学版), 2008, (6): 62-66. [90] CUNLIFFE A M, WILLIAMS P T. Composition of oils derived from the batch pyrolysis of tyres[J]. Journal of Analytical & Applied Pyrolysis, 1998. DOI: 10.1016/S0165-2370(97)00085-5. [91] 张清怡, 刘常青, 吴春山, 等. 热解时间对污泥基生物炭中多环芳烃含量及毒性的影响[J]. 环境工程, 2021, 39(10): 129-135. [92] CHEN X, YANG L, MYNENI S C B, et al. Leaching of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge-derived biochar[J]. Chemical Engineering Journal, 2019,373:840-845. [93] 陈江. 污泥热解过程多环芳烃(PAHs)生成演变规律[D]. 杭州:浙江工业大学, 2019. [94] 戴前进. 污泥热处置过程中二噁英和多环芳烃的排放特性研究[D]. 杭州:浙江大学, 2016. [95] 管志超. 城市污水污泥热解油中多环芳烃(PAHs)生成规律研究[D]. 杭州:浙江工业大学, 2013. [96] 邵一如, 席北斗, 曹金玲, 等. 抗生素在城市污水处理系统中的分布及去除[J]. 环境科学与技术, 2013, 36(7): 85-92, 182. [97] 李杰, 潘兰佳, 余广炜, 等. 污泥中抗生素热解特性及动力学分析[J]. 环境工程学报, 2017, 11(9): 5213-5219. [98] 张瑜. 热解炭化技术应用于工业污泥处理的研究[J]. 再生资源与循环经济, 2019, 12(11): 34-37. [99] 储瑶竹. 城市污泥中微塑料赋存对其热解生物炭性质的影响[D]. 哈尔滨:哈尔滨工业大学, 2021. [100] NI B J, ZHU Z R, LI W H, et al. Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature[J]. Environmental Science & Technology Letters, 2020, 7(12): 961-967. [101] 杨蕴鹏. 污泥与微塑料共热解生物炭对水体中四环素的吸附研究[D]. 雅安:四川农业大学, 2023. [102] QIN J, JIAO Y, LI X, et al. Sludge char-to-fuel approaches based on the catalytic pyrolysis Ⅱ: heat release[J]. Environmental Science and Pollution Research, 2018, 25(36): 36581-36588. [103] 陈晶晶. 市政污泥热解耦合钙基添加剂改性生物炭的土地利用研究[D]. 哈尔滨:哈尔滨工业大学,2022. [104] ZHU Y, ZHAI Y, LI S, et al. Thermal treatment of sewage sludge: a comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus[J]. Chemosphere, 2022, 291(3):133053. [105] DENG W, TAO C, COBB K, et al. Catalytic oxidation of NO at ambient temperature over the chars from pyrolysis of sewage sludge[J]. Chemosphere, 2020, 251(7):126429. [106] RUMPHORST M P, RINGEL H D. Pyrolysis of sewage sludge and use of pyrolysis coke[J]. JAAP, 1994,28(1):137-155. [107] 武杨. 基于模板法热解炭化调控生物质基多孔碳结构及其性能研究[D]. 哈尔滨:东北农业大学, 2022. [108] ZAKER A, CHEN Z, WANG X, et al. Microwave-assisted pyrolysis of sewage sludge: a review[J]. Fuel Processing Technology, 2019, 187: 84-104. [109] MAZUREK K, DRUŻYŃSKI S, KIEŁKOWSKA U, et al. Municipal sewage sludge as a source for obtaining efficient biosorbents: analysis of pyrolysis products and adsorption tests[J]. Materials, 2023, 16(7):2648. [110] RIO S, LE COQ L, FAUR C, et al. Preparation of Adsorbents from Sewage Sludge by Steam Activation for Industrial Emission Treatment[J]. Process Safety and Environmental Protection, 2006, 84(4): 258-264. [111] GONG K, HU Q, YAO L, et al. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr(Ⅵ) removal from wastewater[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7283-7291. [112] 齐秀静, 许晓静, 徐杨. 利用热解炭化污水厂污泥对废弃盐池土改良绿化研究[J]. 现代园艺, 2021, 44(9): 31-32, 92. [113] 靳鹏杰. 市政污泥限氧热解制备新型肥料技术研究与应用[D]. 杭州:浙江科技学院, 2023. [114] 吕伟, 刘春楠, 彭磊, 等. 污泥炭化产物园林基质利用研究[J]. 环境科学导刊, 2022, 41(3): 49-53. [115] RUIZ-GÓMEZ N, QUISPE V, ÁBREGO J, et al. Co-pyrolysis of sewage sludge and manure[J]. Waste Management, 2017, 59: 211-221. [116] ZHAO B, XU X, ZENG F, et al. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(Ⅱ) adsorption kinetics[J]. Environmental Science and Pollution Research, 2018, 25(20): 19423-19435. [117] HAN L, LI J, QU C, et al. Recent progress in sludge co-pyrolysis technology[J]. Sustainability, 2022, 14(13):7574-7586. [118] 吴云生、金潇、蒋红与. 国内外污泥热解炭化技术发展与工程案例[Z]. 2023. [119] 兰珊, 徐佳博, 孙秦玉, 等. 基于连续式热解炭化设备加热方式设计及验证[J]. 农机使用与维修, 2023(8): 1-5. [120] 石呈. 连续热解炭化窑温度场仿真与优化设计[D]. 杭州:中国计量大学, 2023. [121] 贾吉秀. 连续式生物质热解炭化设备的研制[D]. 泰安:山东农业大学, 2018. [122] 尚春民, 李新, 付为杰, 等. 生物质连续热解炭化设备研究[J]. 太阳能学报, 2022, 43(8): 435-440. [123] 林玉鹏, 吴春雷, 陈立春, 等. 市政污泥热解炭化设备的研制[J]. 环境科学导刊, 2019, 38(1): 73-78. [124] 肖培蒙. 城镇污水处理厂污泥碳化技术探析[J]. 中国设备工程, 2019(3): 179-181. [125] 戴晓虎, 杭世珺. 污泥碳化技术发展回顾与总结[R]. 2022. [126] 周学坤, 景元琢, 肖培蒙, 等. 基于工业示范的市政污泥热解炭化机理研究[J]. 科技创新导报, 2019, 16(19): 67-68, 70. [127] 吴云生, 汪国梁, 银正一, 等. 市政污泥热解炭化工程应用及运行分析[J]. 给水排水, 2022, 58(6): 43-48. [128] 杨顺生, 埃·普鲁克纳, 彼得·卡普耐克. 污泥低温热解技术在德国的应用实践[J]. 四川环境, 2010, 29(3): 62-65. [129] 杨顺生, 陈钰, 曹洲榕. 德国污水处理考虑减排的工程实例及思考[J]. 四川环境, 2012, 31(2): 65-70. [130] 常风民, 王凯军, 汪翠萍, 等. 城市污泥热解中试系统集成一体化研究及运行效果评估[J]. 环境工程学报, 2013, 7(9): 3583-3588. [131] 常风民. 城市污泥与煤混合热解特性及中试热解设备研究[D]. 北京:中国矿业大学(北京), 2014. [132] 杨敏, 彭艺艺, 孟宪翚. 污泥碳化技术应用现状及展望[J]. 能源研究与利用, 2017(5): 47-49, 52.
点击查看大图
计量
- 文章访问数: 55
- HTML全文浏览量: 6
- PDF下载量: 1
- 被引次数: 0