中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油藏采出液原油相内源微生物群落的富集及稳定性研究

王方舟 魏岩凤 朱芳芳 夏子渊 苟敏 汤岳琴

王方舟, 魏岩凤, 朱芳芳, 夏子渊, 苟敏, 汤岳琴. 油藏采出液原油相内源微生物群落的富集及稳定性研究[J]. 环境工程, 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006
引用本文: 王方舟, 魏岩凤, 朱芳芳, 夏子渊, 苟敏, 汤岳琴. 油藏采出液原油相内源微生物群落的富集及稳定性研究[J]. 环境工程, 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006
WANG Fangzhou, WEI Yanfeng, ZHU Fangfang, XIA Ziyuan, GOU Min, TANG Yueqin. ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006
Citation: WANG Fangzhou, WEI Yanfeng, ZHU Fangfang, XIA Ziyuan, GOU Min, TANG Yueqin. ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006

油藏采出液原油相内源微生物群落的富集及稳定性研究

doi: 10.13205/j.hjgc.202410006
基金项目: 

国家重点研发计划项目"油藏环境合成微生物组的构建"(2018YFA0902100)

详细信息
    作者简介:

    王方舟(1996-),男,硕士研究生,主要研究方向为环境微生物。1245683114@qq.com

    通讯作者:

    苟敏(1982-),女,教授,主要研究方向为环境微生物。goumin@scu.edu.cn

ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID

  • 摘要: 油藏采出液的原油相近年来被认为是获得原油降解菌的理想环境,但缺乏对其微生物分离富集的研究。以华北油田6口油井采出液为研究对象,比较了采出液油水两相的微生物群落结构,随后富集了各原油相的内源菌群,同时跟踪了富集过程中的群落演替,并考察了富集菌群对环境因子多次连续扰动的响应。结果表明:原油相的微生物多样性及丰富度均高于水相样品,且两相间的群落结构存在显著差异。P1号、92号和99号油井的原油相中分别含有111、23和9个独特的OTUs。连续富集10代后,富集群落15号、92号和P1号的原油降解率逐步增加并趋于稳定,最高降解率分别为81.9%、71.5%和63.6%。15号群落的优势菌主要包括Brevibacillus (89.3%)、Novibacillus (8.0%) 和Bacillus (1.5%),而92号和P1号富集群落以Brevibacillus为绝对优势菌,其相对丰度高达99%以上。在温度及氧气的多次连续扰动下,P1号群落的微生物组成及丰度均发生变化,优势菌Brevibacillus被抑制,同时PaenibacillusAneurinibacillus的相对丰度上升,造成部分中长链烷烃(C18—C29)的积累;但15号和92号群落可维持稳定的烷烃降解能力。上述结果表明,采出液的原油相可以作为原油降解菌的潜在微生物源。
  • [1] TAO W Y, LIN J Z, WANG W D, et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1[J].Ecotoxicol Environ Saf,2020,189:109994.
    [2] GAO P K, LI G Q, TIAN H M, et al. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs[J].Biogeosciences,2015,12:3403-3414.
    [3] XIAO M, SUN S S, ZHANG Z Z, et al. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities[J].Scientific Reports,2016,6:19600.
    [4] VOSKUHL L, AKBARI A, MVLLER H, et al. Indigenous microbial communities in heavy oil show a threshold response to salinity[J].FEMS Microbiol Ecol,2021,97:157.
    [5] MECKENSTOCK R U, von NETZER F, STUMPP C, et al. Oil biodegradation. Water droplets in oil are microhabitats for microbial life[J].Science,2014,345:673-676.
    [6] PANNEKENS M, KROLL L, MVLLER H, et al. Oil reservoirs, an exceptional habitat for microorganisms[J]. N Biotechnol,2019,49:1-9.
    [7] CAI M, NIE Y, CHI C Q, et al. Crude oil as a microbial seed bank with unexpected functional potentials[J]. Scientific Reports,2015,5:16057.
    [8] KRYACHKO Y, DONG X, SENSEN C W, et al. Compositions of microbial communities associated with oil and water in a mesothermic oil field[J].Antonie Van Leeuwenhoek,2012,101:493-506.
    [9] LIANG B, ZHANG K, WANG L Y, et al. Different diversity and distribution of archaeal community in the aqueous and oil phases of production fluid from high-temperature petroleum reservoirs[J].Front Microbiol,2018,9:841.
    [10] WEI Y F, WANG L, XIA Z Y, et al. Microbial communities in crude oil phase and filter-graded aqueous phase from a Daqing oilfield after polymer flooding[J]. J Appl Microbiol,2022,133:842-856.
    [11] LIU Y F, GALZERANI D D, MBADINGA S M, et al. Metabolic capability and in situ activity of microorganisms in an oil reservoir[J].Microbiome,2018,6:5.
    [12] WU Z L, LIN Z, SUN Z Y, et al. A comparative study of mesophilic and thermophilic anaerobic digestion of municipal sludge with high-solids content: reactor performance and microbial community[J].Bioresour Technol,2020,302:122851.
    [13] CHAILLAN F, Le FLōCHE A, BURY E, et al. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms[J].Res Microbiol,2004,155:587-595.
    [14] GRIFFITHS R I, WHITELEY A S, O'DONNELL A G, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition[J].Appl Environ Microbiol,2000,66:5488-5491.
    [15] 李明星, 李红英, 刘鹏, 等. 苏里格气田典型区块采出水乳化特征及乳化影响因素分析[J].油田化学,2023,40:697-703.
    [16] SONG W F, WANG J W, YAN Y C, et al. Shifts of the indigenous microbial communities from reservoir production water in crude oil- and asphaltene-degrading microcosms[J].International Biodeterioration & Biodegradation,2018,132:18-29.
    [17] SHIBULAL B, AL-Bahry S N, AL-Wahaibi Y M, et al. Analysis of bacterial diversity in different heavy oil wells of a reservoir in south oman with alkaline pH[J].Scientifica,2018,21:9230143.
    [18] 吴慧君, 宋权威, 郑瑾, 等. 微生物降解石油烃的功能基因研究进展[J].微生物学通报,2020,47(10):3355-3368.
    [19] 王小通, 向龙斌,张艺馨. 辽河高凝油微生物采油菌剂研究及应用评价[J].岩性油气藏,2017,29(5):162-168.
    [20] SHIBULAL B, AL-BAHRY S N, AL-WAHAIBI Y M, et al. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions[J].PLoS One,2017,12:e0171432.
    [21] HUANG Y, LI L, YIN X, et al. Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach[J].Environ Microbiome,2023,18:39.
    [22] TANG J, WANG Y Q, YANG G Q, et al. Complete genome sequence of the dissimilatory azo reducing thermophilic bacterium Novibacillus thermophiles SG-1[J].J Biotechnol,2018,284:6-10.
    [23] HAUSMANN B, KNORR K H, SCHRECK K, et al. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms[J].ISME J,2016,10:2365-2375.
    [24] GAO P K, WANG H B, LI G X, et al. Low-abundance Dietzia inhabiting a water-flooding oil reservoir and the application potential for oil recovery[J].BioMed Research International,2019:2193453.
    [25] HU B, WANG M X, GENG S, et al. Metabolic exchange with non-alkane-consuming pseudomonas stutzeri slg510a3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. Strain DQ12-45-1b[J]. Applied and Environmental Microbiology,2020,86:e02931-02919.
    [26] SAGHATELYAN A, MARGARYAN A, PANOSYAN H, et al. Microbial diversity of terrestrial geothermal springs in Armenia and Nagorno-karabakh: a review[J].Microorganisms,2021,9(7).
    [27] RICCARDI C, CALVANESE M, GHINI V, et al. Metabolic robustness to growth temperature of a cold-adapted marine bacterium[J].Msystems,2023,8:e01124-01122.
    [28] PENG C, WAN X, ZHANG J, et al. Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen[J]. J Hazard Mater,2022,427:128201.
    [29] YANNARELL A C, STEPPE T F, PAERL H W. Disturbance and recovery of microbial community structure and function following Hurricane Frances[J].Environ Microbiol,2007,9:576-583.
    [30] SAN LEÓN D, NOGALES J. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities[J].Curr Opin Microbiol,2022,69:102169.
    [31] GUDELJ I, KINNERSLEY M, RASHKOV P, et al. Stability of cross-feeding polymorphisms in microbial communities[J].PLoS Comput Biol,2016,12:e1005269.
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 网络出版日期:  2024-11-30

目录

    /

    返回文章
    返回