EVALUATION OF ADSORPTION PERFORMANCE USING COMMERCIAL ACTIVATED CARBON FOR TYPICAL GASOLINE-VAPOR VOCs AT SERVICE STATIONS
-
摘要: 活性炭对不同污染物的吸附去除存在较大差异,对市场商用活性炭进行了典型油气组分间二甲苯吸附去除综合性能评价,并进行吸附性能的系统考察。以6种不同基质材质的活性炭为原料,通过设计间二甲苯静态吸附实验,结合活性炭物理、化学性质的表征和对比,综合筛选出吸附性能最优的活性炭进行动态吸附研究,探究了不同间二甲苯气体流速、进口浓度和床层高度对活性炭吸附性能的影响。结果表明:6种活性炭比表面积为851~1851 m2/g,孔体积为0.047~0.698 m3/g,平均孔径为3.0~4.3 nm,对间二甲苯静态吸附量为253.5~870.7 mg/g。同时,具有微-介孔结构的AC-6活性炭具有最大的间二甲苯静态吸附量870.7 mg/g,最大的比表面积1851 m2/g,孔体积0.698 m3/g和平均孔径4.3 nm,同时含有羟基、羧基、酯基等丰富的表面官能团;对AC-6活性炭进行动态吸附实验,将活性炭床高度从0.6 cm 增加至1.0 cm时,饱和吸附量从436.6 mg/g增至465.4 mg/g;增加进气流量,饱和吸附量由473.1 mg/g降低至430.9 mg/g;提高进口浓度,饱和吸附量从468.0 mg/g降低至386.7 mg/g,间二甲苯进口浓度对吸附性能影响较大。木质AC-6对间二甲苯的吸附动力学更符合准一级动力学模型,Langmuir吸附等温模型能更好地描述活性炭对间二甲苯的吸附过程。Abstract: Different activated carbon (AC) exhibits significant differences in the adsorption and removal of different pollutants. This article comprehensively evaluated the performance of commercial AC in the adsorption and removal of typical gasoline vapor m-xylene, and systematically investigated their adsorption performance. Selecting six ACs with different matrix materials as the research object, the static adsorption experiments were designed and by combining the characterization of physical and chemical properties of activated carbon, the AC with the best adsorption performance was used in dynamic adsorption studies, to explore the influence of gas flow rate, inlet concentration, and bed height on the adsorption performance. The results showed that the specific surface areas of the six ACs were from 851 m2/g to 1851 m2/g, pore volumes were spanning 0.047 m3/g to 0.698 m3/g, average pore sizes were between 3.0 nm and 4.3 nm, and the static adsorption capacities for m-xylene were ranging from 253.5 mg/g to 870.7 mg/g. AC-6 with a micro-mesoporous structure demonstrated the highest static adsorption capacity for m-xylene. It boasted a maximum specific surface area of 1851 m2/g, a pore volume of 0.698 m3/g, and an average pore size of 4.3 nm. Furthermore, AC-6 featured a rich array of surface functional groups, including hydroxyl, carboxyl, and ester groups. In dynamic adsorption experiments with AC-6, increasing the bed height from 0.6 cm to 1.0 cm resulted in a rise in saturated adsorption capacity from 436.6 mg/g to 465.4 mg/g. Increasing the gas flow rate, the saturated adsorption capacity was reduced from 473.1 mg/g to 430.9 mg/g; and increasing the inlet concentration, the saturated adsorption capacity was reduced from 468.0 mg/g to 386.7 mg/g, indicating that the import concentration of m-xylene had a significant impact on the adsorption performance. The adsorption kinetics of AC-6 on m-xylene complied with the Pseudo-first-order kinetic model, and the Langmuir adsorption isotherm model could better describe the adsorption process of AC on m-xylene.
-
Key words:
- activated carbon /
- m-xylene /
- static adsorption /
- dynamic adsorption /
- saturated adsorption capacity
-
[1] 董赵鑫,丁点,姜越琪,等. PM2.5和臭氧对前体物减排和气象变化的响应及其政策启示[J]. 环境科学研究,2023,36(2):223-236. [2] 肖凯,赵泉. 我国典型城市人为源VOCs排放行业的清单研究:以武汉市为例[J]. 广东化工,2019,46(19):143-145. [3] 陈小方,张伟霞,陈柄旭,等. 江门市人为源挥发性有机物排放清单[J]. 环境科学,2018,39(2):600-607. [4] 黄维秋,吕成,郭淑婷,等. 油气排放及回收的研究进展[J]. 石油学报(石油加工),2019,35(2):421-432. [5] 王燕军,李钊,张鹤丰,等. 2019—2021年我国加油站汽油VOCs排放逐月变化分析[J]. 环境科学研究,2023,36(12):2306-2313. [6] 陈淇,程婷,肖更生,等. 榴莲壳和龙眼壳活性炭的制备、表征及其吸附性能研究[J]. 食品工业科技,2023,44(15):46-54. [7] 姚承,王菲,陈诺,等. 煤-生物质活性炭的制备研究[J]. 应用化工,2023,52(4):999-1004. [8] 胡玮,黄玉虎,梁文俊,等. 加油站油气处理装置VOCs化学组成及二次污染生成贡献[J]. 环境科学,2023,44(2):709-718. [9] RAHBAR K, AZAR P A, RASHIDI A, et al. Synthesis of micro/mesoporous carbon adsorbents by in-situ fast pyrolysis of reed for recovering gasoline vapor[J]. Journal of Cleaner Production, 2020, 259:120832. [10] JAMNONGKAN T, INTARAMONGKOL N, KANJANAPHONG N, et al. Study of the Enhancements of Porous Structures of Activated Carbons Produced from Durian Husk Wastes[J]. Sustainability, 2022, 14(10):5896. [11] UNER O, GECGEL N, AVCU T. Comparisons of activated carbons produced from sycamore balls, ripe black locust seed pods, and Nerium oleander fruits and also their H2 storage studies[J]. Carbon Letters, 2021, 31(1):75-92. [12] PAWAR R R, LALHMUNSIAMA, INGOLE P G, et al. Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from the aquatic environment[J]. International Journal of Biological Macromolecules, 2020, 164(3):3145-3154. [13] OTHMAN, FATENERMALA C Y, NORHANIZAISMAIL, et al. Activated-carbon nanofibers/graphene nanocomposites and their adsorption performance towards carbon dioxide[J]. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 2020, 43(10):2023-2030. [14] WANG G, DOU B, ZHANG Z, et al. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon[J]. Journal of Environmental Sciences, 2015, 30:65-73. [15] 蔡莹. 改性活性炭的表面化学性质对甲醛吸附行为影响的研究[D]. 长沙:湖南农业大学,2020. [16] 杨颖超. 载铁、锌活性炭对Pb吸附行为的研究[D]. 太原:太原科技大学,2022. [17] 仁青卓玛,李海朝,张净净,等. 毛发两性活性炭的制备及表征[J]. 应用化工,2021,50(1):265-268. [18] YANG Y, WEI Z B, ZHANG X L, et al. Biochar from Alternanthera philoxeroides could remove Pb(Ⅱ) efficiently[J]. Bioresource Technology,2014, 171:227-232. [19] ZHAO X Y, ZENG X L, QIN Y, et al. An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon[J]. Chemosphere,2018, 206:285-292. [20] 李文文. 污泥基活性炭的制备及吸附甲硫醚和二甲二硫醚的性能研究[D]. 北京:北京林业大学,2021. [21] 石焱,王帅,关威,等. 基于微波处理的烧结烟气NO脱除影响因素[J]. 矿产综合利用,2022(1):190-194. [22] 陈玉莲. 活性炭的改性及其对甲苯和丙酮的吸附性能研究[D]. 上海:华东理工大学,2015. [23] 高宇翔,周磊. 对二甲苯在活性炭固定床上的吸附动力学[J]. 广东化工,2012,39(7):1-2,18. [24] 张晓露,鞠峰,栾辉,等. 轻烃类VOCs在活性炭上的动态吸附行为[J]. 化工环保,2018,38(4):437-444. [25] 赵玉红,张文林,廖钦洪,等. 生姜秸秆基多孔活性炭的研制及吸附性能研究[J]. 环境科学与技术,2022,45(7):177-186. [26] 向如意. 三叶草状活性炭对VOCs的动态吸脱附研究[D]. 武汉:中南民族大学,2022. [27] 赵梦丽. 改性脱硫脱硝废弃活性炭吸附甲苯的研究[D]. 上海:上海第二工业大学,2021. [28] 陈宇. 碱热法松塔活性炭的制备及其对四环素的吸附研究[D]. 南京:南京林业大学,2022.
点击查看大图
计量
- 文章访问数: 35
- HTML全文浏览量: 2
- PDF下载量: 3
- 被引次数: 0