中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

公路货运瓶颈节点污染物时空分布特征分析

段开心 宋国华 翟志强 卢淼

胡洪营, 陆韻, 魏东斌, 陈卓, 巫寅虎, 吴乾元, 黄南, 苑宝玲, 徐明, 王爱杰, 刘贤伟, 齐维晓, 柏耀辉, 梁斌, 高淑红, 张志勇, 邹如森. 再生水生态利用安全保障需求与发展策略[J]. 环境工程, 2024, 42(10): 1-10. doi: 10.13205/j.hjgc.202410001
引用本文: 段开心, 宋国华, 翟志强, 卢淼. 公路货运瓶颈节点污染物时空分布特征分析[J]. 环境工程, 2024, 42(10): 83-91. doi: 10.13205/j.hjgc.202410011
HU Hongying, LU Yun, WEI Dongbin, CHEN Zhuo, WU Yinhu, WU Qianyuan, HUANG Nan, YUAN Baoling, XU Ming, WANG Aijie, LIU Xianwei, QI Weixiao, BAI Yaohui, LIANG Bin, GAO Shuhong, ZHANG Zhiyong, ZOU Rusen. SAFETY GUARANTEE REQUIREMENTS AND DEVELOPMENT STRATEGIES FOR ECOLOGICAL USES OF RECLAIMED WATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 1-10. doi: 10.13205/j.hjgc.202410001
Citation: DUAN Kaixin, SONG Guohua, ZHAI Zhiqiang, LU Miao. SPATIOTEMPORAL EMISSION CHARACTERISTICS ANALYSIS IN BOTTLENECK NODES OF HIGHWAY FREIGHT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 83-91. doi: 10.13205/j.hjgc.202410011

公路货运瓶颈节点污染物时空分布特征分析

doi: 10.13205/j.hjgc.202410011
基金项目: 

国家重点研发计划(2018YFB1600701)

详细信息
    作者简介:

    段开心(2000-),女,硕士研究生,主要研究方向为交通环境、交通大数据。22120814@bjtu.edu.cn

    通讯作者:

    宋国华(1980-),男,教授,主要研究方向为交通规划、交通环境、交通仿真。ghsong@bjtu.edu.cn

SPATIOTEMPORAL EMISSION CHARACTERISTICS ANALYSIS IN BOTTLENECK NODES OF HIGHWAY FREIGHT

  • 摘要: 研究公路货运瓶颈节点的污染物形成机理与分布特征可为货运高排区域的大气污染联防联控提供理论依据。通过采集北京市重点货运路网的逐秒行驶轨迹数据、重型柴油车排放测试数据,依据拥堵形成消散机理,设计基于行驶工况(减速、加速、怠速)的排放源强量化指标,进而构建货车拥堵时空排放模型。最后,以北京市通州区西集综合检查站为案例,分析该瓶颈节点的CO2、CO、THC、NOx时空分布特征,并对比设站前后以及采取减排措施下时空污染物变化情况。结果表明:瓶颈节点的排放总量是常规的2.2~2.5倍。瓶颈区前排队区域以及驶离线后0~10 m区域排放强度最大,为减速驶入和瓶颈作业区域的2.1~2.9倍。抽检与提升检测站服务效率均在一定程度上改善了排放,且2种减排措施对NOx改善效果最为显著。
  • [1] 中华人民共和国生态环境部. 中国移动源环境管理年报(2022年)[R]. 2022.
    [2] 张晔, 宋国华, 尹航, 等. 综合交通运输系统碳排放预测的不确定性分析[J]. 交通运输工程与信息学报, 2023, 21(1): 64-79.
    [3] ZHANG Z, SONG G, CHEN J, et al. Development of a simplified model of speed-specific vehicle-specific power distribution based on vehicle weight for fuel consumption estimates[J]. Transportation Research Record, 2020, 2674(12): 52-67.
    [4] WANG X, SONG G H, ZHAI Z Q, et al. Effects of vehicle load on emissions of heavy-duty diesel trucks: a study based on real-world data[J]. International Journal of Environmental Research and Public Health, 2021, 18(8): 3877.
    [5] 胥耀方, 于雷, 郝艳召, 等. 机动车尾气排放宏观模型开发与应用初探[J]. 交通运输系统工程与信息, 2009, 9(2): 147-154.
    [6] WANG Q D, HUO H, HE K B, et al. Characterization of vehicle driving patterns and development of driving cycles in Chinese cities[J]. Transportation Research Part D: Transport and Environment, 2008, 13(5): 289-297.
    [7] RAKHA H, AHN K, TRANI A. Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions[J]. Transportation Research Part D: Transport and Environment, 2004, 9(1): 49-74.
    [8] DAVIS N. IVE model users manual version 2.0[R]. University of California at Riverside, 2008.
    [9] U.S. Environmental protection agency. MOVES2010 Highway Vehicle: population and activity Data: EPA-420-R-10-026[R]. 2010.
    [10] DUARTE G O, GONÇALVES G A, FARIAS T L. Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements[J]. Transportation Research Part D: Transport and Environment, 2016, 44: 43-54.
    [11] 李晨旭. 基于行驶轨迹的城市机动车排放热点区域污染物时空分布研究[D]. 北京: 北京交通大学, 2020.
    [12] JIMÉNEZ-PALACIOS J L. Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing[D]. Massachusetts Institute of Technology, 1999.
    [13] SONG G H, YU L, WU Y Z. Development of speed correction factors based on speed-specific distributions of vehicle specific power for urban restricted-access roadways[J]. Journal of Transportation Engineering, 2016, 142(3):4016001.
    [14] SONG G H, YU L, TU Z. Distribution characteristics of vehicle-specific power on urban restricted-access roadways[J]. Journal of Transportation Engineering, 2012, 138(2): 202-209.
    [15] US EPA. Population and activity of on-road vehicles in MOVES2014: EPA-420-R-16-003a[R]. 2016.
    [16] 柏洋洋, 何超, 李加强, 等. 基于GPS数据的重型柴油货车排放时空特征分析[J]. 环境工程, 2023, 41(4): 63-70

    ,100.
    [17] ZHOU B Y, HE L Q, ZHANG S M, et al. Variability of fuel consumption and CO2 emissions of a gasoline passenger car under multiple in-laboratory and on-road testing conditions[J]. Journal of Environmental Sciences, 2023, 125: 266-276.
    [18] 王晓宁, 于思源, 郭术林. 基于低温工况速度变化的CAL3QHC模型修正[J]. 环境工程, 2020, 38(11): 130-134.
    [19] CHOUDHARY A, GOKHALE S. Urban real-world driving traffic emissions during interruption and congestion[J]. Transportation Research Part D: Transport and Environment, 2016, 43: 59-70.
    [20] HE Z B, ZHANG W Y, JIA N. Estimating carbon dioxide emissions of freeway traffic: a spatiotemporal cell-based model[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1976-1986.
    [21] 殷子渊, 张凯山. 典型城市轻型汽油车尾气排放模式分析[J]. 环境工程, 2021, 39(4): 64-71.
    [22] 王清洲, 栾海敏, 范鑫, 等. 高速公路主线收费站节能减排测算模型与实例分析[J]. 环境工程, 2019, 37(6): 184-189.
    [23] 赵琦, 于雷, 宋国华. 轻型车与重型车高速公路比功率分布特征研究[J]. 交通运输系统工程与信息, 2015, 15(3): 196-203.
    [24] 中华人民共和国公安部. 道路交通拥堵度评价方法[S]. 2020.
    [25] 陈喜群. 交通流动态随机演化模型研究[D]. 北京: 清华大学, 2012.
    [26] 中华人民共和国工业和信息化部, 公安部. 汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值: GB 1589—2016[S]. 2016.
    [27] 中华人民共和国国务院. 中华人民共和国道路交通安全法(修订)[R]. 2021.
  • 期刊类型引用(20)

    1. 韩玉,郑忠陆,陈贤伟,李霞,郭雨昂,公维洁. 三亚河营养盐时空分布及富营养化研究. 环境化学. 2024(02): 524-535 . 百度学术
    2. 张艳军. 秦皇岛市主要入海河流污染物浓度及入海通量分析. 中国资源综合利用. 2024(03): 153-155 . 百度学术
    3. 顾永钢,于磊,张书函,孟庆义. 农村典型河道劣Ⅴ类水体治理熵增抑制效果评估. 环境工程. 2024(02): 128-134 . 本站查看
    4. 谭杰,樊娟,肖金,李紫嫣,周国治,龙睿. 湘江流域(湖南段)水质时空分布特征及污染源解析. 四川环境. 2024(03): 29-35 . 百度学术
    5. 毛德华,周滢,周懿琳. 1990~2016年湘江流域水质时空变化及驱动因素分析. 环境科学. 2024(07): 3953-3964 . 百度学术
    6. 赵宏烨,杜银龙,廖胜利,李灵慧,杨力鹏,史晓珑. 黄河呼和浩特段水环境质量时空变化分析. 中国环境监测. 2023(01): 117-127 . 百度学术
    7. 吴佳玲,毛德华. 湘江流域水体重金属污染及健康风险评价. 人民珠江. 2023(03): 94-103 . 百度学术
    8. 欧玉婵,申健,陈锐明,李盟军,李冬娴,林挺锐,王荣辉,王思源,艾绍英. 广东淡水河下游流域水质时空变化特征. 广东农业科学. 2023(03): 69-77 . 百度学术
    9. 曹艳敏,安宏雷,韩帅. 湘江流域水环境评价模型及驱动因子识别. 长江科学院院报. 2023(10): 51-58 . 百度学术
    10. 张名豪,范围,刘建辉,敖亮. 成渝双城经济圈流域污染源解析与水质贡献研究. 环境生态学. 2023(10): 22-28+36 . 百度学术
    11. 张富康,冯民权. 基于熵权综合污染指数法的汾河中游水质分析. 人民黄河. 2022(05): 109-114+120 . 百度学术
    12. 袁宇,谭璐,舒倩,陈丹丹,杨海君. 集中式饮用水源地水环境质量变化及健康风险评估——以湘潭市某水厂为例. 环境保护科学. 2022(03): 132-139 . 百度学术
    13. 徐大建,张建国,王佩,秦溱,熊钢,王晓清. 湘江浮游植物的生态特征及其与环境因子的相关性. 湖南农业大学学报(自然科学版). 2022(05): 594-600 . 百度学术
    14. 吴岳玲,李世龙,邱小琮,杨永宇,雷兴碧. 清水河流域水质综合分析与评价. 环境监测管理与技术. 2021(02): 40-45 . 百度学术
    15. 李尧,刘建卫,秦国帅,田晶. 浑太流域水质演变特征及污染源解析. 中国农村水利水电. 2021(08): 14-17+22 . 百度学术
    16. 万自学,杨海君,张正云,周耀明. 长沙市某集中式饮用水水源地周边土壤重金属污染特征和风险评价. 中国环境监测. 2021(04): 118-127 . 百度学术
    17. 陶亚,程亮,赵喜亮,王梓赫. 基于控制单元的流域水环境问题诊断方法研究. 华北水利水电大学学报(自然科学版). 2020(02): 12-17 . 百度学术
    18. 黄华. 基于模糊综合分析法对县城水质的综合评价研究. 环境科学与管理. 2020(05): 173-178 . 百度学术
    19. 李林芝,陈浒,王存璐,陈静,张红梅,杨乙未,郭城. 贵州疣螈栖息地水质评价. 生态学杂志. 2020(08): 2636-2645 . 百度学术
    20. 李苗,严思睿,刘强,张军龙,袁晓敏. 白洋淀流域径流过程对极端气象干旱的响应分析. 环境工程. 2020(10): 14-20 . 本站查看

    其他类型引用(18)

  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 38
出版历程
  • 收稿日期:  2023-12-03
  • 网络出版日期:  2024-11-30

目录

    /

    返回文章
    返回