EXPLORING TREASURE IN FLY ASH: THE STATUS QUO AND SUSTAINABLE DEVELOPMENT PATH OF RARE EARTH ELEMENT RECOVERY TECHNOLOGY IN FLY ASH
-
摘要: 粉煤灰产量逐年增加,造成资源浪费和环境健康隐患,且随着产业化结构的调整,粉煤灰的大量堆存带来一系列压力和挑战。目前,从粉煤灰中提取稀土元素,实现高附加值回收利用,已成为解决粉煤灰问题的重要方案。对粉煤灰中稀土元素的利用现状和现有提取方法进行综述,对现有技术流程进行了系统的总结和讨论,为粉煤灰中稀土元素的资源化利用提供参考借鉴。结果表明:传统粉煤灰回收稀土元素方法回收率高,但成本高且易产生二次污染;生物法等新技术能耗更低、环境友好,相比于传统方法更有前景,但技术不成熟,存在周期长、效率不高、难分离等问题。因此,未来发展方向应集中在传统方法的降本增效和新方法的工艺优化。研究结果将为粉煤灰资源利用相关企业、机构和研究工作者提供参考和借鉴,形成环保、经济、高效的粉煤灰回收策略,践行循环经济的减量化、再利用和资源化,助力我国矿业可持续发展。Abstract: The output of fly ash is increasing year by year, resulting in waste of resources and environmental health hazards. With the adjustment of the industrialization structure, the huge storage of fly ash has brought a series of pressures and challenges. At present, the extraction of rare earth elements from fly ash to achieve high value-added recycling has become an important solution to solve the problem of fly ash. In this paper, the utilization status and existing extraction methods of rare earth elements in fly ash are reviewed, and the existing technical processes are systematically summarized and discussed, to provide a reference for the resource utilization of rare earth elements in fly ash. In this paper, it is found that the traditional methods of recovering rare earth elements from fly ash have high recovery rates, but the cost and secondary pollution risk is high. New technologies such as biological methods have lower energy consumption and are environmentally friendly, which are more promising than traditional methods, but the technology is immature, and there are problems such as long cycles, low efficiency, and difficult separation of the products. Therefore, the future development direction should focus on the cost reduction and efficiency increase of traditional methods and the process optimization of new methods. This paper can provide reference for fly ash resource utilization, to form an environmentally friendly, economical, and efficient fly ash recovery strategy, practice the reduction, reuse and resource utilization of circular economy, and help the sustainable development of China’s mining industry.
-
Key words:
- coal fly ash /
- rare earth elements /
- bioleaching /
- resource utilization /
- metal recovery
-
[1] SEREDIN V V, DAI S. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67-93. [2] KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135-148. [3] 时晗,何晓娟,胡真,等. 我国稀土矿选矿近十年研究现状及发展前景[J]. 有色金属(选矿部分), 2021(4): 18-25. [4] 程建忠,车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2): 65-69, 85. [5] 布朋朋,王成林. 我国稀土矿选矿生产的困境与选矿技术的发展探析[J]. 化工管理, 2020(2): 96-97. [6] 刘璇,赵健,鄢永庚,等. 基于CiteSpace的稀土元素应用研究现状与发展趋势分析[J]. 中国矿业, 2023, 32 (4): 8-15. [7] SANDEEP P, MAITY S, MISHRA S, et al. Estimation of rare earth elements in Indian coal fly ashes for recovery feasibility as a secondary source[J]. Journal of Hazardous Materials Advances,2023, 10: 100257. [8] 曲学峰. 国华准格尔电厂粉煤灰中稀土提取工艺研究[D]. 邯郸:河北工程大学,2018. [9] KHAN I, UMAR R. Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India[J]. Groundwater for Sustainable Development,2019, 8: 346-357. [10] HAN D M, XU L W, WU Q R, et al. Potential environmental risk of trace elements in fly ash and gypsum from ultra-low emission coal-fired power plants in China[J]. Science of the Total Environment, 2021, 798: 149116. [11] 王智欣,张凝凝,彭宝山. 粉煤灰中微量有害元素的淋滤特性研究[J]. 煤化工, 2022, 50 (5): 83-86, 90. [12] 柴磊,岳天,严志桦,等. 粉煤灰资源化利用研究进展[J]. 中国资源综合利用, 2023, 41 (2): 93-98. [13] 苗晓鹏,田亚峻,许德平,等. 煤灰中提取稀土元素及产业化展望[J]. 稀土, 2018, 39 (3): 124-131. [14] QIN S J, ZHAO C L, LI Y H, et al. Review of coal as a promising source of lithium[J]. International Journal of Oil, Gas and Coal Technology, 2015, 9(2): 215. [15] QIN S J, SUN Y Z, LI Y H, et al. Coal deposits as promising alternative sources for gallium[J]. Earth-Science Reviews, 2015, 150:95-101. [16] 秦身钧,徐飞,李神勇,等. 粉煤灰中稀土元素的赋存及其提取研究进展[J]. 稀有金属, 2022, 46 (8): 1097-1110. [17] LAXMIDHAR P, SUBHAKANTA D. Characterization and utilization of coal fly ash: a review[J]. Emerging Materials Research, 2020, 9(3): 1-16. [18] HUANG C, HUANG B, DONG Y M, et al. Efficient and sustainable regeneration of bifunctional ionic liquid for rare earth separation[J]. ACS Sustainable Chemistry & Engineering, 2017 5(4): 3471-3477. [19] PEIRAVI M, ACKAH L A, GURU R, et al. Chemical extraction of rare earth elements from coal ash[J]. Minerals & Metallurgical Processing, 2017, 34(4): 170-177. [20] SEREDIN V V, DAI S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67-93. [21] TAGGART R K, HOWER J C, DWYER G S, et al. Trends in the rare earth element content of US-based coal combustion fly ashes[J]. Environmental Science & Technology,2016, 50(11): 5919-5926. [22] BLISSETT R S, ROWSON N A. A review of the multi-component utilisation of coal fly ash[J]. 2012, 97(none): 1-23. [23] BAKHRAKH A, SOLODOV A, NARUTS V, et al. High-performance self-compacting concrete with the use of coal burning waste[J]. IOP Conference Series: Earth and Environmental Science, 2017, 90: 012213. [24] DARMANSYAH D, YOU S J, WANG Y F.Advancements of coal fly ash and its prospective implications for sustainable materials in Southeast Asian countries: a review[J]. Renewable & Sustainable Energy Reviews,2023, 188: 113895. [25] PERÄMÄKI S E, TIIHONEN A J, VÄISÄNEN A O. Occurrence and recovery potential of rare earth elements in Finnish peat and biomass combustion fly ash[J]. Journal of Geochemical Exploration, 2019, 201: 71-78. [26] STRZAŁKOWSKA E. Rare earth elements and other critical elements in the magnetic fraction of fly ash from several Polish power plants[J]. International Journal of Coal Geology,2022, 258: 104015. [27] CHOUDHARY A K S, KUMAR S, MAITY S. A review on mineralogical speciation, global occurrence and distribution of rare earths and Yttrium (REY) in coal ash[J]. Journal of Earth System Science, 2022, 131(3):1-29. [28] GAMAGE N, SETUNGE S, LIYANAGE K. An Investigation of Usability of Brown Coal Fly Ash for Building Materials[J]. Applied Mechanics and Materials,2013, 438/439: 30-35. [29] MAGALHÃES D S M, CEZAR B F, LUSTOSA P R. Influence of Brazilian fly ash fineness on the cementing efficiency factor, compressive strength and Young’s modulus of concrete[J]. Developments in the Built Environment,2023, 14: 100147. [30] LEVANDOWSKI J, KALKREUTH W. Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil[J]. International Journal of Coal Geology,2009, 77(3/4): 269-281. [31] ROSITA W, BENDIYASA I M, PERDANA I, et al. Sequential particle-size and magnetic separation for enrichment of rare-earth elements and yttrium in Indonesia coal fly ash[J]. Journal of Environmental Chemical Engineering, 2019, 8(1): 103575. [32] LIN R H, HOWARD B H, ROTH E A, et al. Enrichment of rare earth elements from coal and coal by-products by physical separations[J]. Fuel, 2017, 200: 506-520. [33] HONAKER R, GROPPO J, BHAGAVATULA A, et al. Recovery of Rare Earth Minerals and Elements from Coal and Coal Byproducts[C]. [34] LAUDAL D A, BENSON S A, ADDLEMAN R S, et al. Leaching behavior of rare earth elements in fort union lignite coals of North America[J]. International Journal of Coal Geology, 2018, 191: 112-124. [35] ZHANG W, HONAKER R, GROPPO J. Concentration of rare earth minerals from coal by froth flotation[J]. Minerals & Metallurgical Processing, 2017, 34(3): 132-137. [36] ZHANG W C, YANG X B, HONAKER R Q. Association characteristic study and preliminary recovery investigation of rare earth elements from fire clay seam coal middlings[J]. Fuel, 2018, 215(Mar.1): 551-560. [37] GUPTA T, GHOSH T, AKDOGAN G, et al. Maximizing REE enrichment by froth flotation of alaskan coal using box-behnken design[J]. Mining, Metallurgy & Exploration,2019, 36: 571-578. [38] ANDERSON C, TAYLOR P, ANDERSON C. Rare earth flotation fundamentals: a review[C]//Coal Prep,2016,Louisville. [39] HUANG Q Q,NOBLE A, HERBST J, et al. Liberation and release of rare earth minerals from middling Kittanning, fire clay, and West Kentucky No.13 coal sources[J]. Powder Technology,2018: S0032591018302560-. [40] GUPTA N, LI B, LUTTRELL G, et al. Hydrophobic-hydrophilic separation (hhs) process for the recovery and dewatering of ultrafine coal[C]//SME Annual Meeting, 2016. [41] 潘金禾. 粉煤灰中稀土元素赋存机制及富集提取研究[D]. 北京:中国矿业大学, 2021. [42] 朱广利,王浩宇,李海龙,等. 粉煤灰脱炭研究进展及展望[J]. 洁净煤技术, 2017, 23 (1): 110-114. [43] ZHANG W, GROPPO J, HONAKER R. Ash beneficiation for REE recovery[C]//World of Coal Ash Conference,2015: 5-7. [44] WEN Z,CHEN H,PAN J, et al. Grinding activation effect on the flotation recovery of unburned carbon and leachability of rare earth elements in coal fly ash[J]. Powder Technology, 2022, 398: 117045. [45] ROSITA W, PERDANA I, BENDIYASA I M, et al. Sequential alkaline-organic acid leaching process to enhance the recovery of rare earth elements from Indonesian coal fly ash[J]. Journal of Rare Earths,2023. [46] WEN Z, ZHOU C, PAN J, et al. Recovery of rare-earth elements from coal fly ash via enhanced leaching[J]. International Journal of Coal Preparation and Utilization,2022, 42(7): 2041-2055. [47] JUN Y.Mechanical and microstructural dissimilarities in alkali-activation for six Class F Korean fly ashes[J]. Construction and Building Materials, 2014, 52: 396-403. [48] 汤梦成. 碱熔-酸浸提取粉煤灰中稀土元素研究[D].北京:中国矿业大学,2019. [49] TANG M, ZHOU C, PAN J,et al.Study on extraction of rare earth elements from coal fly ash through alkali fusion: acid leaching[J]. Minerals Engineering, 2019, 136: 36-42. [50] TAGGART R K, HOWER J C, HSU-KIM H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash[J]. International Journal of Coal Geology, 2018, 196: 106-114. [51] WU G, WANG T, CHEN G, ET AL. Coal fly ash activated by NaOH roasting: rare earth elements recovery and harmful trace elements migration[J]. Fuel, 2022, 324: 124515. [52] 赵鸣宇. 粉煤灰制备陶粒支撑剂过程中重金属元素迁移转化规律研究[D]. 南京:东南大学, 2022. [53] FAN X, XIA J, ZHANG D, et al.Highly-efficient and sequential recovery of rare earth elements, alumina and silica from coal fly ash via a novel recyclable ZnO sinter method[J]. Journal of Hazardous Materials, 2022, 437: 129308. [54] LANGE C N, DE C I M C, FIGUEIREDO A M G, et al. A Brazilian coal fly ash as a potential source of rare earth elements[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 311(2): 1235-1241. [55] KASHIWAKURA S, KUMAGAI Y K H, WAGATSUMA K. Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 Solvent[J]. Open Journal of Physical Chemistry, 2013, 3(2): 69-75. [56] 吉万顺. 盘北粉煤灰浸出液中多金属离子下稀土元素的选择性萃取[D]. 北京:中国矿业大学, 2020. [57] PAN J, HASSAS B V, REZAEE M A, ET AL. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes[J]. Journal of Cleaner Production, 2021, 284: 124725. [58] KING J F, TAGGART R K, SMITH R C, et al. Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash[J]. International Journal of Coal Geology, 2018, 195: 75-83. [59] PRIHUTAMI P, PRASETYA A, SEDIAWAN W B,et al.Study on rare earth elements leaching from magnetic coal fly ash by citric acid[J]. Journal of Sustainable Metallurgy, 2021, 7(3): 1241-1253. [60] BANERJEE R, CHAKLADAR S, CHAKRAVARTY S. Extraction of rare earth metals from coal ash using mild lixiviants in a single step process[D]. In the Minerals, Metals & Materials Series,2022. [61] MA J, LI S, WANG J, et al. Bioleaching rare earth elements from coal fly ash by Aspergillus niger[J]. Fuel, 2023, 354: 129387. [62] QU Y, LIAN B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10[J]. Bioresource Technology,2013, 136: 16-23. [63] MARRA A, CESARO A, RENE E R, et al. Bioleaching of metals from WEEE shredding dust[J]. Journal of Environmental Management,2018, 210: 180-190. [64] MENG X, ZHAO H, ZHANG Y, ET AL. Simulated bioleaching of ion-adsorption rare earth ore using metabolites of biosynthetic citrate: an alternative to cation exchange leaching[J]. Minerals Engineering,2022, 189: 107900. [65] BRISSON V, ZHUANG W, ALVAREZ-COHEN L. Bioleaching of rare earth elements from monazite sand[J]. Biotechnology and Bioengineering,2016, 113(2): 339-348. [66] PARK S, LIANG Y. Bioleaching of trace elements and rare earth elements from coal fly ash. International Journal of Coal Science & Technology,2019, 6(1): 74-83. [67] FAN X L, LV S Q, XIA J L, et al. Extraction of Al and Ce from coal fly ash by biogenic Fe3+ and H2SO4[J]. Chemical Engineering Journal,2019, 370: 1407-1424. [68] FATHOLLAHZADEH H, HACKETT M J, KHALEQUE H N, et al. Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite[J]. Bioresource Technology Reports,2018, 3: 109-118. [69] MURAVYOV M I, BULAEV A G, MELAMUD V S, et al. Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities[J]. Microbiology,2015, 84(2): 194-201. [70] 陈淦. P204溶剂萃取稀土元素的性能分析及机理研究[D]. 北京:华北电力大学(北京), 2022. [71] 王亚兵. 新型萃取体系应用于煤灰中分离稀土的研究[D]. 赣州:江西理工大学, 2018. [72] PEIRAVI M, ACKAH L A, GURU R B R S R K, et al. Chemical extraction of rare earth elements from coal ash[J]. Minerals & Metallurgical Processing,2017, 34(4): 170-177. [73] HUANG C, WANG Y B, HUANG B, et al. The recovery of rare earth elements from coal combustion products by ionic liquids[J]. Minerals Engineering,2018, 130: 142-147. [74] STOY L, DÍAZ V, HUANG C. Preferential recovery of rare-earth elements from coal fly ash using a recyclable ionic liquid[J]. Environmental Science & Technology,2021, 55(13): 9209-9220. [75] 田春晓. 超临界CO2流体络合萃取分离粉煤灰中的稀土元素[D]. 北京:华北电力大学(北京), 2019. [76] ANAND R K, KARAN R, MADHU B J, et al. Development of process scheme for recovery of rare earths from leachate of coal flyash[J]. Cleaner Chemical Engineering,2022, 4: 100078. [77] DAS S, GAUSTAD G, SEKAR A, et al. Techno-economic analysis of supercritical extraction of rare earth elements from coal ash[J]. Journal of Cleaner Production,2018, 189: 539-551. [78] OUARDI Y E, VIROLAINEN S, MOUELE E S M, et al. The recent progress of ion exchange for the separation of rare earths from secondary resources: a review[J]. Hydrometallurgy,2022,218: 106047. [79] 陈园园. 离子交换法从离子型稀土矿山尾液中回收稀土工艺及机理研究[D]. 赣州:江西理工大学, 2014. [80] WU S, WANG L, ZHAO L, et al. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes: a critical review[J]. Chemical Engineering Journal,2017, 335: 774-800. [81] OCHSENKVHN-PETROPULU M, LYBEROPULU T, PARISSAKIS G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method[J]. Analytica Chimica Acta,1995, 315(1/2): 231-237. [82] MOSTAJERAN M, BONDY J, REYNIER N, et al. Mining value from waste: scandium and rare earth elements selective recovery from coal fly ash leach solutions[J]. Minerals Engineering,2021, 173: 107091. [83] 马娟娟,王金喜,牛红亚,等. 基于微生物法回收稀土元素的研究进展[J]. 稀土, 2023, 44(5): 127-136. [84] MULLEN M D, WOLF D C, FERRIS F G, et al. Bacterial sorption of heavy metals[J]. Applied and Environmental Microbiology,1989, 55(12): 3143-3149. [85] 沈吉利,梁长利,任嗣利. 黏质沙雷氏菌对稀土废水中Dy(Ⅲ)的生物吸附性能及吸附机理分析[J]. 环境污染与防治, 2022, 44 (5): 587-592, 617. [86] GIESE E C. Biosorption as green technology for the recovery and separation of rare earth elements[J]. World Journal of Microbiology & Biotechnology,2020, 36(4). [87] PARK D, MIDDLETON A C, SMITH R C, et al. A biosorption-based approach for selective extraction of rare earth elements from coal byproducts[J]. Separation and Purification Technology,2020, 241: 116726. [88] GIESE E C, JORDÃO C S. Biosorption of lanthanum and samarium by chemically modified free Bacillus subtilis cells[J]. Applied Water Science,2019, 9(8). [89] ZHANG K, WEI B, TAO J, et al. Recovery of rare earth elements from deep-sea mud using acid leaching followed by selective solvent extraction with N1923 and TBP[J]. Separation and Purification Technology,2023, 318: 124013. [90] 涂志红,肖秋东,张雪桢,等. 微生物技术在稀土资源利用中的研究进展[J/OL]. 中国稀土学报, 1-17[2023-12-08] http://kns.cnki.net/kcms/detail/11.2365.tg.20230310.2239.002.html.
点击查看大图
计量
- 文章访问数: 19
- HTML全文浏览量: 2
- PDF下载量: 1
- 被引次数: 0