CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“粉”中探宝:粉煤灰中稀土元素回收技术现状与可持续发展路径

何杪 张震宇 陈流东 唐佳译 陈伊静 杨振东

何杪, 张震宇, 陈流东, 唐佳译, 陈伊静, 杨振东. “粉”中探宝:粉煤灰中稀土元素回收技术现状与可持续发展路径[J]. 环境工程, 2024, 42(10): 121-131. doi: 10.13205/j.hjgc.202410015
引用本文: 何杪, 张震宇, 陈流东, 唐佳译, 陈伊静, 杨振东. “粉”中探宝:粉煤灰中稀土元素回收技术现状与可持续发展路径[J]. 环境工程, 2024, 42(10): 121-131. doi: 10.13205/j.hjgc.202410015
HE Miao, ZHANG Zhenyu, CHEN Liudong, TANG Jiayi, CHEN Yijing, YANG Zhendong. EXPLORING TREASURE IN FLY ASH: THE STATUS QUO AND SUSTAINABLE DEVELOPMENT PATH OF RARE EARTH ELEMENT RECOVERY TECHNOLOGY IN FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 121-131. doi: 10.13205/j.hjgc.202410015
Citation: HE Miao, ZHANG Zhenyu, CHEN Liudong, TANG Jiayi, CHEN Yijing, YANG Zhendong. EXPLORING TREASURE IN FLY ASH: THE STATUS QUO AND SUSTAINABLE DEVELOPMENT PATH OF RARE EARTH ELEMENT RECOVERY TECHNOLOGY IN FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 121-131. doi: 10.13205/j.hjgc.202410015

“粉”中探宝:粉煤灰中稀土元素回收技术现状与可持续发展路径

doi: 10.13205/j.hjgc.202410015
基金项目: 

四川省自然科学基金(23NSFSC5891)

稀土资源利用国家重点实验室开放基金(RERU2022015)

详细信息
    作者简介:

    何杪(2003-),女,主要研究方向为资源化回收研究。2970377803@qq.com

    通讯作者:

    杨振东(1993-),男,博士,主要研究方向为资源化利用。yangzhendong@cdu.edu.cn

EXPLORING TREASURE IN FLY ASH: THE STATUS QUO AND SUSTAINABLE DEVELOPMENT PATH OF RARE EARTH ELEMENT RECOVERY TECHNOLOGY IN FLY ASH

  • 摘要: 粉煤灰产量逐年增加,造成资源浪费和环境健康隐患,且随着产业化结构的调整,粉煤灰的大量堆存带来一系列压力和挑战。目前,从粉煤灰中提取稀土元素,实现高附加值回收利用,已成为解决粉煤灰问题的重要方案。对粉煤灰中稀土元素的利用现状和现有提取方法进行综述,对现有技术流程进行了系统的总结和讨论,为粉煤灰中稀土元素的资源化利用提供参考借鉴。结果表明:传统粉煤灰回收稀土元素方法回收率高,但成本高且易产生二次污染;生物法等新技术能耗更低、环境友好,相比于传统方法更有前景,但技术不成熟,存在周期长、效率不高、难分离等问题。因此,未来发展方向应集中在传统方法的降本增效和新方法的工艺优化。研究结果将为粉煤灰资源利用相关企业、机构和研究工作者提供参考和借鉴,形成环保、经济、高效的粉煤灰回收策略,践行循环经济的减量化、再利用和资源化,助力我国矿业可持续发展。
  • [1] SEREDIN V V, DAI S. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67-93.
    [2] KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135-148.
    [3] 时晗,何晓娟,胡真,等. 我国稀土矿选矿近十年研究现状及发展前景[J]. 有色金属(选矿部分), 2021(4): 18-25.
    [4] 程建忠,车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2): 65-69

    , 85.
    [5] 布朋朋,王成林. 我国稀土矿选矿生产的困境与选矿技术的发展探析[J]. 化工管理, 2020(2): 96-97.
    [6] 刘璇,赵健,鄢永庚,等. 基于CiteSpace的稀土元素应用研究现状与发展趋势分析[J]. 中国矿业, 2023, 32 (4): 8-15.
    [7] SANDEEP P, MAITY S, MISHRA S, et al. Estimation of rare earth elements in Indian coal fly ashes for recovery feasibility as a secondary source[J]. Journal of Hazardous Materials Advances,2023, 10: 100257.
    [8] 曲学峰. 国华准格尔电厂粉煤灰中稀土提取工艺研究[D]. 邯郸:河北工程大学,2018.
    [9] KHAN I, UMAR R. Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India[J]. Groundwater for Sustainable Development,2019, 8: 346-357.
    [10] HAN D M, XU L W, WU Q R, et al. Potential environmental risk of trace elements in fly ash and gypsum from ultra-low emission coal-fired power plants in China[J]. Science of the Total Environment, 2021, 798: 149116.
    [11] 王智欣,张凝凝,彭宝山. 粉煤灰中微量有害元素的淋滤特性研究[J]. 煤化工, 2022, 50 (5): 83-86

    , 90.
    [12] 柴磊,岳天,严志桦,等. 粉煤灰资源化利用研究进展[J]. 中国资源综合利用, 2023, 41 (2): 93-98.
    [13] 苗晓鹏,田亚峻,许德平,等. 煤灰中提取稀土元素及产业化展望[J]. 稀土, 2018, 39 (3): 124-131.
    [14] QIN S J, ZHAO C L, LI Y H, et al. Review of coal as a promising source of lithium[J]. International Journal of Oil, Gas and Coal Technology, 2015, 9(2): 215.
    [15] QIN S J, SUN Y Z, LI Y H, et al. Coal deposits as promising alternative sources for gallium[J]. Earth-Science Reviews, 2015, 150:95-101.
    [16] 秦身钧,徐飞,李神勇,等. 粉煤灰中稀土元素的赋存及其提取研究进展[J]. 稀有金属, 2022, 46 (8): 1097-1110.
    [17] LAXMIDHAR P, SUBHAKANTA D. Characterization and utilization of coal fly ash: a review[J]. Emerging Materials Research, 2020, 9(3): 1-16.
    [18] HUANG C, HUANG B, DONG Y M, et al. Efficient and sustainable regeneration of bifunctional ionic liquid for rare earth separation[J]. ACS Sustainable Chemistry & Engineering, 2017 5(4): 3471-3477.
    [19] PEIRAVI M, ACKAH L A, GURU R, et al. Chemical extraction of rare earth elements from coal ash[J]. Minerals & Metallurgical Processing, 2017, 34(4): 170-177.
    [20] SEREDIN V V, DAI S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67-93.
    [21] TAGGART R K, HOWER J C, DWYER G S, et al. Trends in the rare earth element content of US-based coal combustion fly ashes[J]. Environmental Science & Technology,2016, 50(11): 5919-5926.
    [22] BLISSETT R S, ROWSON N A. A review of the multi-component utilisation of coal fly ash[J]. 2012, 97(none): 1-23.
    [23] BAKHRAKH A, SOLODOV A, NARUTS V, et al. High-performance self-compacting concrete with the use of coal burning waste[J]. IOP Conference Series: Earth and Environmental Science, 2017, 90: 012213.
    [24] DARMANSYAH D, YOU S J, WANG Y F.Advancements of coal fly ash and its prospective implications for sustainable materials in Southeast Asian countries: a review[J]. Renewable & Sustainable Energy Reviews,2023, 188: 113895.
    [25] PERÄMÄKI S E, TIIHONEN A J, VÄISÄNEN A O. Occurrence and recovery potential of rare earth elements in Finnish peat and biomass combustion fly ash[J]. Journal of Geochemical Exploration, 2019, 201: 71-78.
    [26] STRZAŁKOWSKA E. Rare earth elements and other critical elements in the magnetic fraction of fly ash from several Polish power plants[J]. International Journal of Coal Geology,2022, 258: 104015.
    [27] CHOUDHARY A K S, KUMAR S, MAITY S. A review on mineralogical speciation, global occurrence and distribution of rare earths and Yttrium (REY) in coal ash[J]. Journal of Earth System Science, 2022, 131(3):1-29.
    [28] GAMAGE N, SETUNGE S, LIYANAGE K. An Investigation of Usability of Brown Coal Fly Ash for Building Materials[J]. Applied Mechanics and Materials,2013, 438/439: 30-35.
    [29] MAGALHÃES D S M, CEZAR B F, LUSTOSA P R. Influence of Brazilian fly ash fineness on the cementing efficiency factor, compressive strength and Young’s modulus of concrete[J]. Developments in the Built Environment,2023, 14: 100147.
    [30] LEVANDOWSKI J, KALKREUTH W. Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil[J]. International Journal of Coal Geology,2009, 77(3/4): 269-281.
    [31] ROSITA W, BENDIYASA I M, PERDANA I, et al. Sequential particle-size and magnetic separation for enrichment of rare-earth elements and yttrium in Indonesia coal fly ash[J]. Journal of Environmental Chemical Engineering, 2019, 8(1): 103575.
    [32] LIN R H, HOWARD B H, ROTH E A, et al. Enrichment of rare earth elements from coal and coal by-products by physical separations[J]. Fuel, 2017, 200: 506-520.
    [33] HONAKER R, GROPPO J, BHAGAVATULA A, et al. Recovery of Rare Earth Minerals and Elements from Coal and Coal Byproducts[C].
    [34] LAUDAL D A, BENSON S A, ADDLEMAN R S, et al. Leaching behavior of rare earth elements in fort union lignite coals of North America[J]. International Journal of Coal Geology, 2018, 191: 112-124.
    [35] ZHANG W, HONAKER R, GROPPO J. Concentration of rare earth minerals from coal by froth flotation[J]. Minerals & Metallurgical Processing, 2017, 34(3): 132-137.
    [36] ZHANG W C, YANG X B, HONAKER R Q. Association characteristic study and preliminary recovery investigation of rare earth elements from fire clay seam coal middlings[J]. Fuel, 2018, 215(Mar.1): 551-560.
    [37] GUPTA T, GHOSH T, AKDOGAN G, et al. Maximizing REE enrichment by froth flotation of alaskan coal using box-behnken design[J]. Mining, Metallurgy & Exploration,2019, 36: 571-578.
    [38] ANDERSON C, TAYLOR P, ANDERSON C. Rare earth flotation fundamentals: a review[C]//Coal Prep,2016,Louisville.
    [39] HUANG Q Q,NOBLE A, HERBST J, et al. Liberation and release of rare earth minerals from middling Kittanning, fire clay, and West Kentucky No.13 coal sources[J]. Powder Technology,2018: S0032591018302560-.
    [40] GUPTA N, LI B, LUTTRELL G, et al. Hydrophobic-hydrophilic separation (hhs) process for the recovery and dewatering of ultrafine coal[C]//SME Annual Meeting, 2016.
    [41] 潘金禾. 粉煤灰中稀土元素赋存机制及富集提取研究[D]. 北京:中国矿业大学, 2021.
    [42] 朱广利,王浩宇,李海龙,等. 粉煤灰脱炭研究进展及展望[J]. 洁净煤技术, 2017, 23 (1): 110-114.
    [43] ZHANG W, GROPPO J, HONAKER R. Ash beneficiation for REE recovery[C]//World of Coal Ash Conference,2015: 5-7.
    [44] WEN Z,CHEN H,PAN J, et al. Grinding activation effect on the flotation recovery of unburned carbon and leachability of rare earth elements in coal fly ash[J]. Powder Technology, 2022, 398: 117045.
    [45] ROSITA W, PERDANA I, BENDIYASA I M, et al. Sequential alkaline-organic acid leaching process to enhance the recovery of rare earth elements from Indonesian coal fly ash[J]. Journal of Rare Earths,2023.
    [46] WEN Z, ZHOU C, PAN J, et al. Recovery of rare-earth elements from coal fly ash via enhanced leaching[J]. International Journal of Coal Preparation and Utilization,2022, 42(7): 2041-2055.
    [47] JUN Y.Mechanical and microstructural dissimilarities in alkali-activation for six Class F Korean fly ashes[J]. Construction and Building Materials, 2014, 52: 396-403.
    [48] 汤梦成. 碱熔-酸浸提取粉煤灰中稀土元素研究[D].北京:中国矿业大学,2019.
    [49] TANG M, ZHOU C, PAN J,et al.Study on extraction of rare earth elements from coal fly ash through alkali fusion: acid leaching[J]. Minerals Engineering, 2019, 136: 36-42.
    [50] TAGGART R K, HOWER J C, HSU-KIM H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash[J]. International Journal of Coal Geology, 2018, 196: 106-114.
    [51] WU G, WANG T, CHEN G, ET AL. Coal fly ash activated by NaOH roasting: rare earth elements recovery and harmful trace elements migration[J]. Fuel, 2022, 324: 124515.
    [52] 赵鸣宇. 粉煤灰制备陶粒支撑剂过程中重金属元素迁移转化规律研究[D]. 南京:东南大学, 2022.
    [53] FAN X, XIA J, ZHANG D, et al.Highly-efficient and sequential recovery of rare earth elements, alumina and silica from coal fly ash via a novel recyclable ZnO sinter method[J]. Journal of Hazardous Materials, 2022, 437: 129308.
    [54] LANGE C N, DE C I M C, FIGUEIREDO A M G, et al. A Brazilian coal fly ash as a potential source of rare earth elements[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 311(2): 1235-1241.
    [55] KASHIWAKURA S, KUMAGAI Y K H, WAGATSUMA K. Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 Solvent[J]. Open Journal of Physical Chemistry, 2013, 3(2): 69-75.
    [56] 吉万顺. 盘北粉煤灰浸出液中多金属离子下稀土元素的选择性萃取[D]. 北京:中国矿业大学, 2020.
    [57] PAN J, HASSAS B V, REZAEE M A, ET AL. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes[J]. Journal of Cleaner Production, 2021, 284: 124725.
    [58] KING J F, TAGGART R K, SMITH R C, et al. Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash[J]. International Journal of Coal Geology, 2018, 195: 75-83.
    [59] PRIHUTAMI P, PRASETYA A, SEDIAWAN W B,et al.Study on rare earth elements leaching from magnetic coal fly ash by citric acid[J]. Journal of Sustainable Metallurgy, 2021, 7(3): 1241-1253.
    [60] BANERJEE R, CHAKLADAR S, CHAKRAVARTY S. Extraction of rare earth metals from coal ash using mild lixiviants in a single step process[D]. In the Minerals, Metals & Materials Series,2022.
    [61] MA J, LI S, WANG J, et al. Bioleaching rare earth elements from coal fly ash by Aspergillus niger[J]. Fuel, 2023, 354: 129387.
    [62] QU Y, LIAN B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10[J]. Bioresource Technology,2013, 136: 16-23.
    [63] MARRA A, CESARO A, RENE E R, et al. Bioleaching of metals from WEEE shredding dust[J]. Journal of Environmental Management,2018, 210: 180-190.
    [64] MENG X, ZHAO H, ZHANG Y, ET AL. Simulated bioleaching of ion-adsorption rare earth ore using metabolites of biosynthetic citrate: an alternative to cation exchange leaching[J]. Minerals Engineering,2022, 189: 107900.
    [65] BRISSON V, ZHUANG W, ALVAREZ-COHEN L. Bioleaching of rare earth elements from monazite sand[J]. Biotechnology and Bioengineering,2016, 113(2): 339-348.
    [66] PARK S, LIANG Y. Bioleaching of trace elements and rare earth elements from coal fly ash. International Journal of Coal Science & Technology,2019, 6(1): 74-83.
    [67] FAN X L, LV S Q, XIA J L, et al. Extraction of Al and Ce from coal fly ash by biogenic Fe3+ and H2SO4[J]. Chemical Engineering Journal,2019, 370: 1407-1424.
    [68] FATHOLLAHZADEH H, HACKETT M J, KHALEQUE H N, et al. Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite[J]. Bioresource Technology Reports,2018, 3: 109-118.
    [69] MURAVYOV M I, BULAEV A G, MELAMUD V S, et al. Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities[J]. Microbiology,2015, 84(2): 194-201.
    [70] 陈淦. P204溶剂萃取稀土元素的性能分析及机理研究[D]. 北京:华北电力大学(北京), 2022.
    [71] 王亚兵. 新型萃取体系应用于煤灰中分离稀土的研究[D]. 赣州:江西理工大学, 2018.
    [72] PEIRAVI M, ACKAH L A, GURU R B R S R K, et al. Chemical extraction of rare earth elements from coal ash[J]. Minerals & Metallurgical Processing,2017, 34(4): 170-177.
    [73] HUANG C, WANG Y B, HUANG B, et al. The recovery of rare earth elements from coal combustion products by ionic liquids[J]. Minerals Engineering,2018, 130: 142-147.
    [74] STOY L, DÍAZ V, HUANG C. Preferential recovery of rare-earth elements from coal fly ash using a recyclable ionic liquid[J]. Environmental Science & Technology,2021, 55(13): 9209-9220.
    [75] 田春晓. 超临界CO2流体络合萃取分离粉煤灰中的稀土元素[D]. 北京:华北电力大学(北京), 2019.
    [76] ANAND R K, KARAN R, MADHU B J, et al. Development of process scheme for recovery of rare earths from leachate of coal flyash[J]. Cleaner Chemical Engineering,2022, 4: 100078.
    [77] DAS S, GAUSTAD G, SEKAR A, et al. Techno-economic analysis of supercritical extraction of rare earth elements from coal ash[J]. Journal of Cleaner Production,2018, 189: 539-551.
    [78] OUARDI Y E, VIROLAINEN S, MOUELE E S M, et al. The recent progress of ion exchange for the separation of rare earths from secondary resources: a review[J]. Hydrometallurgy,2022,218: 106047.
    [79] 陈园园. 离子交换法从离子型稀土矿山尾液中回收稀土工艺及机理研究[D]. 赣州:江西理工大学, 2014.
    [80] WU S, WANG L, ZHAO L, et al. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes: a critical review[J]. Chemical Engineering Journal,2017, 335: 774-800.
    [81] OCHSENKVHN-PETROPULU M, LYBEROPULU T, PARISSAKIS G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method[J]. Analytica Chimica Acta,1995, 315(1/2): 231-237.
    [82] MOSTAJERAN M, BONDY J, REYNIER N, et al. Mining value from waste: scandium and rare earth elements selective recovery from coal fly ash leach solutions[J]. Minerals Engineering,2021, 173: 107091.
    [83] 马娟娟,王金喜,牛红亚,等. 基于微生物法回收稀土元素的研究进展[J]. 稀土, 2023, 44(5): 127-136.
    [84] MULLEN M D, WOLF D C, FERRIS F G, et al. Bacterial sorption of heavy metals[J]. Applied and Environmental Microbiology,1989, 55(12): 3143-3149.
    [85] 沈吉利,梁长利,任嗣利. 黏质沙雷氏菌对稀土废水中Dy(Ⅲ)的生物吸附性能及吸附机理分析[J]. 环境污染与防治, 2022, 44 (5): 587-592

    , 617.
    [86] GIESE E C. Biosorption as green technology for the recovery and separation of rare earth elements[J]. World Journal of Microbiology & Biotechnology,2020, 36(4).
    [87] PARK D, MIDDLETON A C, SMITH R C, et al. A biosorption-based approach for selective extraction of rare earth elements from coal byproducts[J]. Separation and Purification Technology,2020, 241: 116726.
    [88] GIESE E C, JORDÃO C S. Biosorption of lanthanum and samarium by chemically modified free Bacillus subtilis cells[J]. Applied Water Science,2019, 9(8).
    [89] ZHANG K, WEI B, TAO J, et al. Recovery of rare earth elements from deep-sea mud using acid leaching followed by selective solvent extraction with N1923 and TBP[J]. Separation and Purification Technology,2023, 318: 124013.
    [90] 涂志红,肖秋东,张雪桢,等. 微生物技术在稀土资源利用中的研究进展[J/OL]. 中国稀土学报, 1-17[2023-12-08

    ] http://kns.cnki.net/kcms/detail/11.2365.tg.20230310.2239.002.html.
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 网络出版日期:  2024-11-30

目录

    /

    返回文章
    返回