RESEARCH ADVANCES AND HOTSPOT EVOLUTION OF SUSTAINABLE AVIATION FUEL: A VISUAL ANALYSIS BASED ON BIBLIOMETRICS
-
摘要: 可持续航空燃料作为航空碳中和的必然战略选择,其应用可显著减少航空业的碳排放。采用文献计量分析方法,结合S形曲线及可视化工具VOSviewer,对2001—2022年Web of Science数据库中可持续航空燃料相关的2440篇研究论文进行定量分析,并根据incoPat全球专利数据库对可持续航空燃料关键技术进行发展态势分析。结果表明:可持续航空燃料相关的研究论文数量从2001年的8篇增加到2022年的388篇,通过构建发文量S形曲线,可直观看到可持续航空燃料在未来近20年内具备巨大的发展潜力。在全球化的可持续航空燃料科技角逐中,中国发文量居全球第2位,仅次于美国,两者共同为国际合作网络核心国家。通过关键词及热点演进,表明"乙醇""微藻""纤维素""加氢脱氧""费托合成""生命周期评估"成为新的研究热点,结合专利分析,表明"加氢脱氧"与"费托合成"技术发展到了较为成熟的阶段。相关文献计量结论为中国立足自身国情发展自身的可持续航空燃料科技与产业提供信息支撑。Abstract: As an inevitable strategic choice for aviation carbon neutrality, the application of sustainable aviation fuel (SAF) can significantly reduce the carbon emissions of the aviation industry. Bibliometric analysis combined with the S-curve technique and visualization tools (VOSviewer) were applied, to quantitatively analyze 2440 articles related to SAF research in the Web of Science from 2001 to 2022. The development trend of key technologies for SAF based on the incoPat Global Patent Database was also conducted. Biblio-metric results revealed that the number of articles on SAF had increased from 8 in 2001 to 388 in 2022, and it intuitively showed that SAF technology has great development potential in the next 20 years by constructing the S-curve of the published volume. In the global competition for sustainable aviation fuel technology, China ranks second in terms of publication volume in the world after the United States, both of them are core countries in the international cooperation network. The co-occurrence and evolution path of keywords suggests that "ethanol", "microalgae", "cellulose", "hydrodeoxygenation", "Fischer-Tropsch synthesis" and "life cycle assessment" have become the current research hotspots. Patent data analysis demonstrates that the two key technologies, "hydrodeoxygenation" and "Fischer-Tropsch synthesis", have become a relatively mature. This bibliometric conclusion can provide support for China to develop its own sustainable aviation fuel technology and industry based on its own national situations.
-
Key words:
- sustainable aviation fuel /
- bibliometric /
- research trend /
- hotspot evolution /
- VOSviewer
-
[1] BP. Statistical Review of World Energy[M]. London: 2022: 3. [2] WEI H, LIU W, CHEN X, et al. Renewable bio-jet fuel production for aviation: a review[J]. Fuel, 2019, 254: 115599. [3] 丁水汀, 杨晓军, 甘宸宇, 等. 负碳航空燃料的新路径探讨[J]. 航空动力, 2022(6): 16-19. [4] KRAMER S, ANDAC G, HEYNE J, et al. Perspectives on fully synthesized sustainable aviation fuels: Direction and opportunities[J]. Frontiers in Energy Research, 2022, 9. doi: 10.3389/fenrg.2021.782823. [5] 陈佳慧, 王斐菲, 张乃丽, 等. 生物航油的制备与应用发展前景[J]. 能源研究与利用, 2021(4): 21-31. [6] 李世良. 油脂高效利用产生物航空燃油及高值化学品相关工艺研究[D]. 北京:北京化工大学, 2020. [7] GUTIERREZ-Antonio C, GOMEZ-Castro F I, de LIRA-FLORES J A, et al. A review on the production processes of renewable jet fuel[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 709-729. [8] 孙晓英, 刘祥, 赵雪冰, 等. 航空生物燃料制备技术及其应用研究进展[J]. 生物工程学报, 2013, 29(3): 285-298. [9] 郝敬文. 基于(火用)分析的生物质水相转化制备生物航油生命周期评价[D]. 南京:东南大学, 2021. [10] 乔凯, 傅杰, 周峰, 等. 国内外生物航煤产业回顾与展望[J]. 生物工程学报, 2016, 32(10): 1309-1321. [11] WANG T J, TAN J, QIU S, et al. Liquid fuel production by aqueous phase catalytic transformation of biomass for aviation[C]//Energy Procedia. Taipei, TAIWAN, 2014: 432-435. [12] SHAHRIAR M F, KHANAL A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF)[J]. Fuel, 2022, 325: 124905. [13] 王翔宇. 可持续航空燃料发展展望[J]. 航空动力, 2022(2): 24-28. [14] 杨飞. 某型生物航空煤油的基础特性研究[D]. 南京:南京航空航天大学, 2019. [15] 娄岩, 傅晓阳, 黄鲁成. 基于文献计量学的技术成熟度研究及实证分析[J]. 统计与决策, 2010(19): 99-101. [16] 赵蓉英, 许丽敏. 文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报,2010, 36(5): 60-68. [17] MAO G, HU H, LIU X, et al. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019[J]. Environmental Pollution, 2021, 275:115785. [18] DONTHU N, KUMAR S, MUKHERJEE D, et al. How to conduct a bibliometric analysis: an overview and guidelines[J]. Journal of Business Research, 2021, 133: 285-296. [19] 雪晶, 侯丹, 王旻烜, 等. 世界生物质能产业与技术发展现状及趋势研究[J]. 石油科技论坛, 2020, 39(3): 25-35. [20] 刘子钰, 王基铭. 我国绿色航空能源与减排降碳探索途径[J]. 当代石油石化, 2022, 30(11): 1-7. [21] 郭祥, 李瑞祎, 张蕊, 等. 基于文献计量的生物质气化研究发展态势分析[J]. 环境工程, 2022, 40(7): 232-239, 131. [22] KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421. [23] SARATHY S M, WESTBROOK C K, MEHL M, et al. Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C-7 to C-20[J]. Combustion and Flame, 2011, 158(12): 2338-2357. [24] BOND J Q, UPADHYE A A, OLCAY H, et al. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass[J]. Energy & Environmental Science, 2014, 7(4): 1500-1523. [25] XING R, SUBRAHMANYAM A V, OLCAY H, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green Chemistry, 2010, 12(11): 1933-1946. [26] RANZI E, FRASSOLDATI A, STAGNI A, et al. Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels[J]. International Journal of Chemical Kinetics, 2014, 46(9): 512-542. [27] VERIANSYAH B, HAN J Y, KIM S K, et al. Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts[J]. Fuel, 2012, 94(1): 578-585. [28] SHONNARD D R, WILLIAMS L, KALNES T N. Camelina-derived jet fuel and diesel: sustainable advanced biofuels[J]. Environmental Progress & Sustainable Energy, 2010, 29(3): 382-392. [29] CORPORAN E, EDWARDS T, SHAFER L,et al. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels[J]. Energy & Fuels, 2011, 25(3): 955-966. [30] OLCAY H, SUBRAHMANYAM A V, XING R, et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams[J]. Energy & Environmental Science, 2013, 6(1): 205-216. [31] De Jong S, HOEFNAGELS R, FAAIJ A, et al. The feasibility of short-term production strategies for renewable jet fuels: a comprehensive techno-economic comparison[J]. Biofuels Bioproducts & Biorefining-BioFPR, 2015, 9(6): 778-800. [32] 甘宸宇, 丁水汀, 邱天, 等. 可持续航空燃料安全标准发展历程及趋势[J]. 航空动力学报, 1-10. [33] ZHANG C, HUI X, LIN Y, Sung C. Recent development in studies of alternative jet fuel combustion: progress, challenges, and opportunities[J]. Renewable & Sustainable Energy Reviews, 2016, 54: 120-138. [34] 丁奕如,杨雷,郑平,等.中国可持续航空燃料发展研究报告[R].北京大学能源学院, 2022. [35] 许绩辉, 王克. 中国民航业中长期碳排放预测与技术减排潜力分析[J]. 中国环境科学, 2022, 42(7): 3412-3424. [36] 詹婷雯, 邓志彬. 可持续航空燃料发展评价与对策研究[J]. 科技创新与应用, 2019(2): 151-152. [37] 赵晶, 郭放, 阿鲁斯, 等. 未来航空燃料原料可持续性研究[J]. 北京航空航天大学学报, 2016, 42(11): 2378-2385. [38] 李宇萍, 章青, 王铁军, 等. 第二代生物航空燃油的关键技术分析和进展动态[J]. 林产化学与工业, 2014(5): 162-168.
点击查看大图
计量
- 文章访问数: 35
- HTML全文浏览量: 4
- PDF下载量: 1
- 被引次数: 0