POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF HEAVY METALS IN AN ABANDONED IRON ORE AND DOWNSTREAM FARMLAND SOIL
-
摘要: 农田土壤重金属污染与粮食安全、人体健康安全息息相关。以贵溪市乌石坑铁矿为例,在废弃矿坑、尾矿库以及下游农田采集了52份表层土壤样本,检测其重金属含量,并对采样数据运用地累积指数法、潜在生态风险评价法评估重金属的污染特征,采用绝对主成分-多元线性回归模型(APCS-MLR)和正定矩阵因子分解模型(PMF)解析土壤重金属来源。结果表明:下游农田土壤Cu、Cd、As超过GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》筛选值;地累积指数评价结果表明:Cd处于偏中度污染级别,Cu、Ni、Zn处于轻度污染级别,As、Hg、Pb处于无污染级别。潜在生态风险评价结果表明:Cd(133.36)为较强生态风险,Hg(54.18)为中度生态风险,其他元素单项潜在生态风险均为轻度生态风险。研究区综合生态风险指数均值为226.59,整体呈较强的潜在生态风险。APCS-MLR与PMF模型评价得出结论相似,Pb主要是自然来源,Cd、Cu主要受废弃铁矿影响,Zn、Ni受自然和废弃铁矿共同影响,As主要来源于养殖场,Hg主要受化石燃料燃烧影响。Abstract: Heavymetal contamination in farmland is closely related to food safety and human health. This study investigated the heavy metal pollution in farmland soil near the Wushikeng Iron Mine in Guixi, Jiangxi Province. We collected 52 soil samples from the abandoned mining pits, tailings ponds, and downstream farmlands. We used the geo-accumulation index method and the potential ecological risk assessment method to evaluate the pollution characteristics of heavy metals in the soil. Additionally, the absolute principal component-multiple linear regression model (APCS-MLR) and positive matrix factorization model (PMF) were used to determine the sources of heavy metals detected in the soil. The study results showed that the contents of Cu, Cd, and As in the downstream farmland soil exceeded the screening value of the Soil Environmental Quality-Agricultural Land Soil Pollution Risk Control Standard (Trial) of China. The geo-accumulation index evaluation revealed that Cd was in moderately pollution level, Cu, Ni, and Zn were in slightly pollution level, and As, Hg, and Pb were in pollution-free level. Moreover, the potential ecological risk assessment results indicated that Cd (133.36) posed a strong ecological risk, Hg (54.18) posed a moderate ecological risk, and the other heavy metal elements posed a mild ecological risk. The average comprehensive ecological risk index of the study area was 226.59, indicating a strong potential ecological risk. Both the APCS-MLR and PMF models identified the sources of heavy metals in the soil. The results showed that Pb is mainly from natural sources, Cd and Cu are mainly affected by abandoned iron ore, Zn and Ni are affected by both natural and abandoned iron ore, As is mainly from farms, and Hg is mainly affected by fossil fuel combustion.
-
Key words:
- abandoned iron ore /
- potential ecological risk assessment /
- PMF /
- APCS-MLR /
- source analysis
-
[1] 朱点钰,杨倩琪. 中国矿区重金属污染现状及生态风险研究[J].矿产勘查,2018,9(4):747-750. [2] 吕玉娟,王秋月,孙雪梅,等. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J].环境工程技术学报,2023,13(4):1464-1475. [3] 王辉,赵悦铭,刘春跃,等. 辽河干流沉积物重金属污染特征及潜在生态风险评价[J].环境工程,2019,37(11):65-69,165. [4] 王树民,顾永正,杨建兴,等. 1000 MW近零排放燃煤机组重金属排放及分布特征[J].中国环境科学,2022,42(5):2060-2069. [5] 李传飞,刘登璐,赵平,等. 某区域内矿区土壤重金属污染与生态风险评价[J].四川环境,2021,40(2):141-148. [6] 吴洋,杨军,周小勇,等. 广西都安县耕地土壤重金属污染风险评价[J].环境科学,2015,36(8):2964-2971. [7] 赵丹,於方,廖晓勇,等. 发达国家(地区)污染场地修复现状及对中国的启示[J].中国科学院大学学报,2023,40(4):441-452. [8] 路一帆,陆胤,蔡慧,等. 铅蓄电池厂遗留场地重金属污染分析及健康风险评价[J].环境工程,2022,40(1):135-140,189. [9] 旦增,周鹏,汪晶,等. 拉萨市生活垃圾卫生填埋场土壤重金属调查和分析评价[J].环境工程,2019,37(11):194-199,154. [10] 蓝巧娟,吴彦,闫彬等. 三峡库区(万州段)消落区沉积物重金属污染评价及来源分析[J].环境工程,2018,36(8):193-197. [11] 简锐风,岳甫均,朱兆洲,等. 环渤海滨海湿地重金属的时空变化及来源分析[J].中国环境科学,2023,43(11):6025-6038. [12] 屠德刚,冯涛,杨国栋,等. 机械厂遗留场地重金属污染特征及健康风险评价[J].环境工程,2022,40(4):217-223. [13] 章琳. 沧州市东部某种植区土壤重金属来源分析[J].安徽农业科学,2023,51(12):69-73. [14] 曾昭婵,曾昭朝,胡佳佳. 贵州煤矿区表层水-沉积物重金属分布特征及来源分析:以新寨河为例[J].中国环境监测,2023,39(4):147-157. [15] 邓晓茜,毛龙江,蔡於杞,等. 基于APCS-MLR和PMF模型的海州湾沉积物重金属污染特征与来源研究[J].海洋环境科学,2023,42(3):387-395. [16] 段海静,马嘉玉,彭超月,等. 基于APCS-MLR和PMF模型解析黄河下游文化公园土壤重金属污染特征及来源分析[J].环境科学,2023,44(8):4406-4415. [17] 孟婷婷,刘金宝,董浩,等. 城市绿地不同管理方式土壤重金属污染及生态风险评价[J].环境工程,2022,40(12):217-223. [18] 崔飞剑,覃光雄,曾海龙,等. 沙河流域重污染支流表层沉积物中氮、磷和重金属的空间分布特征及污染评价[J].环境工程,2022,40(1):110-116. [19] 黄国勤. 江西省土壤重金属污染研究[C]//中国环境科学学会.2011中国环境科学学会学术年会论文集(第二卷).中国环境科学出版社,2011:773-778. [20] BIJAY S, SUMI H, SAURAY D J. Elemental composition of rural household dust in Brahmaputra fluvial plain: insights from SEM-EDS, receptor model, and risk assessment[J]. Environmental Geochemistry and Health,2023,45:2447-2460. [21] 王帅,胡恭任,于瑞莲,等. 九龙江河口表层沉积物中重金属污染评价及来源[J].环境科学研究,2014,27(10):1110-1118. [22] 张笑辰,刘煜,张兴绘,等. 江西省主要城市土壤重金属污染及风险评价[J].环境科学与技术,2022,45(8):206-217. [23] 俞诗颖. 区域土壤重金属污染源解析和污染风险情景模拟[D].杭州:浙江大学,2021. [24] 廖泽源,李杰芹,沈智杰,等. 重庆某铁矿区周边耕地土壤重金属污染评价及来源解析[J/OL].环境科学:1-16[2023-09-08].DOI: 10.13227/j.hjkx.202305154. [25] 崔志谋,史小红,赵胜男,等. 基于PCA-APCS-MLR模型的乌梁素海表层沉积物重金属时空分布及来源解析[J/OL].环境科学:1-18[2023-09-08].DOI: 10.13227/j.hjkx.202303141. [26] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994,5(2):111-126. [27] 彭学锐,周思裕,陈翔,等. 广西梧州六堡茶主产区茶叶-土壤重金属污染现状及源解析[J].农业环境科学学报,2023,42(10):2231-2243. [28] 沈城,王文娟,沙晨燕,等. 典型行业再利用土壤重金属含量分布、来源解析及生态风险评价[J/OL].环境科学:1-19[2023-09-08].DOI: 10.13227/j.hjkx.202303085. [29] 修金生,吴顺意,周伦江,等. 福建省规模化猪场饲料和猪粪中重金属砷含量测定初报[J].中国农学通报,2011,27(17):13-16. [30] 王瑾. 饲料添加剂在土壤和蔬菜中的迁移及残留研究[D].杭州:浙江工商大学,2009. [31] 建旭平,耿春女,纪文芳,等. 九龙江流域规模化养猪场砷污染状况调查[J].生态毒理学报,2013,8(2):250-256. [32] LI H B, YU S, LI G L, et al. Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai[J]. Environmental Pollution, 2011, 159(12):3536-3544. [33] 袁中帮. 安宁市易门箐废弃铁矿生态综合治理技术研究[J].现代矿业,2021,37(10):185-190. [34] 王美华. PCA-APCS-MLR和地统计学的典型农田土壤重金属来源解析[J].环境科学,2023,44(6):3509-3519. [35] 董騄睿,胡文友,黄标,等. 基于正定矩阵因子分析模型的城郊农田土壤重金属源解析[J].中国环境科学,2015,35(7):2103-2111. [36] 刘玥,郭文强,武晔秋. 基于PMF模型的大同市城区公园地表灰尘中重金属污染评价及来源解析[J].环境化学,2022,41(5):1616-1628. [37] 乔云航. 抚顺东兴矿业公司吕家堡铁矿尾矿库治理分析[J].山西建筑,2022,48(12):70-73. [38] JIN Y L, O’CONNORR D, OK Y S, et al. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis[J]. Environment International, 2019,124:320-328. [39] 刘德新,孟凡磊,段海静,等. 基于APCS-MLR和PMF的污灌与工业复合区农田土壤重金属来源解析[J/OL].环境科学:1-17[2023-12-23].https://doi.org/10.13227/j.hjkx.202308126. [40] GHOLIZADEH M H, MELESSE A M, REDDI L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida[J]. Science of the Total Environment, 2016, 566: 1552-1567. [41] PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. [42] WANG L, CHEN H R, WU J Z, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil[J]. Journal of Hazardous Materials, 2021, 414: 125494. [43] WANG Y T, GUO G H, ZHANG D G, et al. An integrated method for source apportionment of heavy metal (loid) s in agricultural soils and model uncertainty analysis[J]. Environmental Pollution, 2021, 276: 116666. [44] DONG B, ZHANG R Z, GAN Y D, et al. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region[J]. Science of the Total Environment, 2019, 651: 3127-3138. [45] LEI M, LI K, GUO G, et al. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation[J]. Science of the Total Environment, 2022, 817: 152899. [46] 冯韶华,俞一帆,张旭峰,等. 中国农田土壤重金属污染源解析研究进展[J].环境污染与防治,2023,45(9):1300-1306.
点击查看大图
计量
- 文章访问数: 28
- HTML全文浏览量: 5
- PDF下载量: 0
- 被引次数: 0