EFFECT OF COMBINATION OF RICE STRAW BIOCHAR AND BACILLUS CEREUS ON TRANSFORMATION OF SOIL HEAVY METAL SPECIATIONS AND MICROBIAL COMMUNITY
-
摘要: 为了明确稻秆生物炭和芽孢杆菌的联合作用对铜、镉污染土壤的重金属形态转化及微生物群落的作用机理,通过土壤培养试验,对比分析了土壤中Cu和Cd不同形态的含量、土壤化学性质和酶活性的变化特征,采用高通量测序技术阐明土壤微生物群落的响应规律。结果表明:生物炭和微生物(BC+M)处理后,土壤Cu和Cd酸提取态下降尤为显著,含量分别降低27.35%和27.48%;BC+M能显著提高土壤pH值,增强土壤有效磷、速效钾和过氧化氢酶活性,分别提高了114.16%、462.76%和113.79%;酸提取态Cu和Cd含量与pH、碱解氮(AN)、有效磷(AP)、速效钾(AK)、阳离子交换量(CEC)和有机质(SOM)呈负相关,但酸提取态Cu与AK、AP显著负相关(P<0.05),酸提取态Cd与AK、pH显著负相关(P<0.05);BC+M处理显著提高土壤微生物群落多样性,主要提高了Chloroflexi、Actinobacteriota、Firmicutes、Acidobacteriota和Bacteroidota等对重金属具有较强耐性的优势菌群丰度,相比真菌群落,细菌群落对土壤环境因子变化的响应更加强烈,尤其是Proteobacteria、Chloroflexi、Firmicutes、Acidobacteriota和Bacteroidota。稻秆生物炭与芽孢杆菌主要通过影响土壤pH值、AP、AK和细菌群落结构,从而使土壤Cu和Cd酸提取态向其他形态转化,这可为土壤重金属污染微生物修复提供理论参考。Abstract: To determine the combined effect of rice straw biochar and Bacillus on the transformation of heavy metal speciation and the mechanisms affecting microbial communities in Cu-Cd contaminated soil, the contents of different speciation of Cu and Cd in soil, soil chemical properties and enzyme activities were compared and analyzed through soil culture experiments. The structure composition and diversity response patterns of soil microbial communities were investigated by high-throughput sequencing technology. The results indicated that after biochar and microbial (BC+M) treatment, the acid-extractable Cu and Cd contents decreased significantly, and the contents decreased by 27.35% and 27.48%, respectively. BC+M significantly enhanced soil pH value, and enhanced soil available phosphorus, available potassium and catalase activity by 114.16%, 462.76% and 113.79%, respectively. Acid-extracted Cu and Cd were negatively correlated with pH, alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), available potassium (AK), cation exchange capacity (CEC) and organic matter (SOM), but acid-extracted Cu was significantly negatively correlated with AK and AP (P<0.05), and acid-extracted Cd was significantly negatively correlated with AK and pH (P<0.05). The BC+M treatment significantly diversified the soil microbial communities, mainly increasing the abundance of dominant bacterial groups such as Chloroflexi, Actinobacteriota, Firmicutes, Acidobacteriota and Bacteroidota, which are known for strong resistance to heavy metals. Compared to fungal communities, bacterial communities respond more intensely to changes in soil environmental factors, especially Proteobacteria, Chloroflexi, Firmicutes, Acidobacteriota and Bacteroidota. Rice straw biochar and Bacillus primarily affect soil pH, AP, AK and the structure of the bacterial community, thereby facilitating the transformation of acid-extractable forms of Cu and Cd into other potentially less harmful states. This provides a theoretical reference for the microbial processes in soil heavy metal pollution remediation.
-
Key words:
- biochar /
- Bacillus cereus /
- heavy metal /
- speciation /
- microbial community /
- soil
-
[1] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6):2822-2833. [2] 熊静, 王蓓丽, 刘渊文,等. 生物炭去除土壤重金属的研究进展[J]. 环境工程, 2019, 37(9):182-187. [3] 郑影怡, 刘杰, 蒋萍萍, 等. 河池市某废弃冶炼厂周边农田土壤重金属污染特征及风险评价[J]. 环境工程, 2021, 39(5): 238-245. [4] 环境保护部和国土资源部. 全国土壤污染状况调查公报[R]. 北京, 2014. [5] HUANG Y, WANG L Y, WANG W J, et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis[J]. Science of the Total Environment, 2018, 651:3034-3042. [6] 李海华, 丁贺, 王志琛, 等. 羟基磷灰石改性烟草秸秆生物炭钝化修复土壤镉、铜污染[J]. 华北水利水电大学学报(自然科学版), 2023, 44(3):94-101. [7] 梅闯, 蔡昆争, 黎紫珊, 等. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 2022, 31(2):380-390. [8] DUAN M L, LI Z J, YAN R P, et al. Mechanism for combined application of biochar and Bacillus cereus to reduce antibiotic resistance genes in copper contaminated soil and lettuce[J]. Science of the Total Environment, 2023, 884(2023):163422. [9] 胡慧聪, 唐朝生, 沈征涛, 等. 微生物诱导碳酸盐沉淀技术强化生物炭固定铅的效果及机理研究[J]. 环境科学学报, 2023, 43(5):441-449. [10] 任晓斌, 白红娟, 卫燕红, 等. 光合细菌和生物炭对污染土壤中铬的稳定化效果及小白菜生长的影响[J]. 农业环境科学学报, 2021, 40(10):2141-2149. [11] 贺晓晗, 郝鑫瑞, 邓郁蓉, 等. 生物炭固定耐镉菌群对Cd2+的吸附及作用机制[J]. 环境科学学报, 2023, 43(2):136-146. [12] WEI T, LI X, LI H, et al. The potential effectiveness of mixed bacteria-loaded biochar/activated carbon to remediate Cd,Pb co-contaminated soil and improve the performance of pakchoi plants[J]. Journal of Hazardous Materials, 2022, 435:129006. [13] 李荣华, 涂志能, ALI Amjad, 等. 生物炭复合菌剂促进堆肥腐熟及氮磷保留[J]. 中国环境科学, 2020, 40(8):3449-3457. [14] MA H, WEI M, WANG Z, et al. Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar[J]. Journal of Hazardous Materials, 2020, 388:122065. [15] 杨昳, 陈元晖, 张春燕, 等. 复合菌和鸡粪生物炭对镍和镉污染土壤的修复效果研究[J]. 农业环境科学学报, 2022, 41(8):1709-1719. [16] TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environment International, 2020, 137:105576. [17] HUANG F, DANG Z, GUO C, et al. Biosorption of Cd (Ⅱ) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium contaminated soil[J]. Colloids Surface, 2013, 107:11-18. [18] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000. [19] FENG W R, XIAO X, LI J J, et al. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: bipolar remediation for heavy metals contaminated mining soils[J]. Chemosphere, 2023, 315:137730. [20] LAI W W, WU Y Y, ZHANG C N, et al. Combination of biochar and phosphorus solubilizing bacteria to improve the stable form of toxic metal minerals and microbial abundance in lead/cadmium-contaminated soil[J]. Agronomy, 2022,12(5):1003. [21] LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 645:702-709. [22] DIAO Y Z, WANG X X, ZHOU L, et al. Simultaneously immobilization of Cd and Pb in paddy soil by magnetic modified biochar based on textile dyeing sludge: metal speciation and soil microbial community evolution[J]. Journal of Soils and Sediments, 2022, 22:2765-2776. [23] 夏梦莲, 樊杰, 雷学文, 等. 微生物与生物炭复合修复铬污染土壤的室内试验研究[J]. 科学技术与工程, 2020, 20(18):7567-7572. [24] HUANG F, GAO L Y, WU R R, et al. Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar[J]. Science of the Total Environment, 2020, 731:139163. [25] 王楚栋, 单明娟, 陆扣萍, 等. 丛枝菌根真菌及猪炭对多氯联苯污染土壤的联合修复作用[J]. 环境科学学报, 2018, 38(10):4157-4164. [26] 王初亮, 张思敏, 何钢, 等. 生物炭与微生物菌剂配施对植烟土壤理化性质及细菌多样性的影响[J]. 作物研究, 2023, 37(3):230-238. [27] 刘玉玲, 朱虎成, 彭鸥, 等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 2020, 41(9):4322-4332. [28] 钟明涛, 李维弟, 朱永琪, 等. 生物炭和菌肥对土壤镉形态和棉花镉吸收的影响[J]. 土壤通报, 2022, 53(5):1172-1181. [29] 王鑫宇, 孟海波, 沈玉君, 等. 改性生物炭特性表征及对冶炼厂周边农田土壤铜镉形态的影响[J]. 环境科学, 2021, 42(9):4441-4451. [30] 吴萍萍, 李录久, 王家嘉, 等. 秸秆生物炭对矿区污染土壤重金属形态转化的影响[J]. 生态与农村环境学报, 2017, 33(5):453-459. [31] 张燕, 铁柏清, 刘孝利, 等. 玉米秸秆生物炭对稻田土壤砷、镉形态的影响[J]. 环境科学学报, 2018, 38(2):715-721. [32] 陈保冬, 张莘, 伍松林, 等. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J]. 岩矿测试, 2019, 38(1):1-25. [33] SONG D L, CHEN L, ZHANG S, et al. Combined biochar and nitrogen fertilizer change soil enzyme and microbial activities in a 2-year field trial[J]. European Journal of Soil Biology, 2020, 99:103212. [34] 房体磊, 李小龙, 刘高峰, 等. 不同秸秆还田方式对烟稻轮作土壤细菌群落多样性和结构的影响[J/OL]. 农业资源与环境学报:1-14[2023-09-19]. DOI: 10.13254/j.jare.2023.0206. [35] LIU X, MA Y, MANECSKI K, et al. Biochar and alternate wetting-drying cycles improving rhizosphere soil nutrients availability and tobacco growth by altering root growth strategy in Ferralsol and Anthrosol[J]. Science of the Total Environment, 2022, 806:150503. [36] 江海鸿, 王小娟, 谷洁, 等. SiO2纳米颗粒对猪粪好氧堆肥过程中重金属形态分布和细菌群落的影响[J]. 西北农业学报, 2023, 32(7):1078-1089. [37] 周健, 李虎, 李晓林, 等. 外源Cd胁迫下施污土壤中重金属的形态特征和土壤酶活性的关系[J]. 环境化学, 2016, 35(10):2036-2043. [38] 杜志敏, 郝建设, 周静, 等. 四种改良剂对Cu、Cd复合污染土壤中Cu、Cd形态和土壤酶活性的影响[J]. 生态环境学报, 2011, 20(10):1507-1512. [39] 王垚, 胡洋, 马友华, 等. 生物炭对镉污染土壤有效态镉及土壤酶活性的影响[J]. 土壤通报, 2020, 51(4):979-985. [40] WANG X, FANG L C, BEIYUAN J Z, et al. Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil[J]. Environmental Pollution, 2021, 277:116758. [41] FAJARDO C, COSTA G, NANDE M, et al. Pb,Cd,and Zn soil contamination: monitoring functional and structural impacts on the microbiome[J]. Applied Soil Ecology, 2018, 135:56-64. [42] XU Z M, ZHANG Y X, WANG L, et al. Rhizobacteria communities reshaped by red mud based passivators is vital for reducing soil Cd accumulation in edible amaranth[J]. Science of the Total Environment, 2022, 826:154002. [43] 兰玉书, 袁林, 杨刚, 等. 钝化材料对农田土壤Cd形态及微生物群落的影响[J]. 农业环境科学学报, 2020, 39(12):2743-2751. [44] 许洪扬, 付冰清, 康慧, 等. 铅锌矿渣污染土壤的重金属含量及真菌群落特征分析[J]. 湖南农业大学学报(自然科学版), 2021, 47(2):203-211. [45] HASSAN A, PARIATAMBY A, OSSAI C, et al. Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi[J]. Biochemical Engineering Journal, 2020, 157:107550. [46] AL-SADI A M, AL-KHATRI B, NASEHI A, et al. High fungal diversity and dominance by ascomycota in dam reservoir soils of arid climates[J]. International Journal of Agriculture and Biology, 2017, 19(4):328. [47] MA A, ZHUANG X L, WU J M, et al. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil[J]. Plos One, 2013, 8(6):66146. [48] LI X Q, MENG D L, LI J, et al. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination[J]. Environmental Pollution, 2017, 231:908-917. [49] HAO J K, WEI Z M, WEI D, et al. Roles of adding biochar and montmorillonite alone on reducing the bioavailability of heavy metals during chicken manure composting[J]. Bioresource Technology, 2019, 294:122199. [50] 蒲生彦, 余东, 肖雨婷, 等. 钙基磁性生物炭对Cr(Ⅵ)污染土壤钝化稳定化机制及微生物影响研究[J]. 环境科学学报, 2022, 42(4):390-402. [51] 姚丽茹, 李伟, 朱员正, 等. 施用生物炭对麦田土壤细菌群落多样性和冬小麦生长的影响[J]. 环境科学, 2023, 44(6):3396-3407. [52] LI M, CHENG X H, GUO H X. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration & Biodegradation, 2013, 76:81-85. [53] CHU H Y, FIERER N, LAUBER C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology, 2010, 12(11):2873-3088. [54] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol, 2018, 3:470-480. [55] 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(2):14-20. [56] NAVARRETE A A, KURAMAE E E, HOLLANDER M D, et al. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils[J]. FEMS Microbiology Ecology, 2013, 83(3):607-621. [57] CUI H, OU Y, WANG L X, et al. The passivation effect of heavy metals during biochar-amended composting: Emphasize on bacterial communities[J]. Waste Management, 2020, 118(6):360-368.
点击查看大图
计量
- 文章访问数: 19
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0