RESEARCH ON LAYOUT OF INTERCEPTION COMBINED SEWER OVERFLOW DETENTION TANKS BASED ON THEIR LIFE CYCLE CARBON EMISSIONS
-
摘要: 调蓄池是城市水环境治理的重要设施。目前,截流式合流制调蓄池在工程应用中主要关注截污效果、造价和用地等方面,较少涉及碳排放和整体效益分析。为进一步探究调蓄池截污效果和碳产排情况及其之间的关系,以苏中某市为例,通过实地监测溢流污水,利用SWMM建立溢流污染计算模型,模拟不同规模的末端集中式和沿线分散式调蓄池的污染物控制效果,并在此基础上计算各方案下全生命周期的碳排放。结果表明:尽管分散调蓄截污效果较好,但总碳排放量更大,且随着调蓄池规模增加,分散调蓄的碳排放增量相比集中调蓄进一步扩大。该结果为城市水务系统的绿色发展和碳减排目标的实现提供了参考,建议在未来城市截污调蓄池设计建设时,要综合考量节能减排与提高效能,以实现整体效益最大化。Abstract: Detention tanks are crucial facilities in urban water environment management. Currently, the engineering application of interception-type combined sewer overflow (CSO) detention tanks primarily focuses on pollutant reduction efficiency, cost, and land use, with limited consideration on carbon emissions and overall benefits analysis. To further investigate the relationship between the pollutant reduction effectiveness of detention tanks and their carbon emissions, this study, taking a city in central Jiangsu province as a case, conducted field monitoring of CSO and utilized the Storm Water Management Model (SWMM) to establish a CSO pollution calculation model. The model simulated the pollutant control effects of end-of-pipe centralized detention tanks and distributed detention tanks of various sizes along the drainage system. Based on these simulations, the study calculated the life cycle carbon emissions for each scheme. The results indicated that although distributed detention tanks were more effective at pollutant reduction, resulting in higher overall carbon emissions. Moreover, as the size of the detention tanks increased, the carbon emission increment of the distributed detention tanks further exceeded that of the centralized detention tanks. These findings provide a reference for the green development of urban water systems and the achievement of carbon reduction goals. It is recommended that future design and construction of urban CSO detention tanks comprehensively consider energy conservation, emission reduction, and efficiency improvement to maximize their overall benefits.
-
Key words:
- detention tank /
- carbon emissions /
- combined sewer overflow (CSO) /
- SWMM /
- pollutants reduction
-
[1] 詹志威, 李孟, 金溪. 基于SWMM模型的合流制管道溢流污染控制系统模拟[J]. 环境工程学报, 2020, 14(2): 423-431. [2] 刘宇轩, 高雅弘, 王振北, 等. 城镇合流制排水系统溢流污染控制综述[J]. 环境工程, 2023, 41(12): 32-47. [3] 张维, 孙永利, 李家驹, 等. 合流制溢流污染快速净化处理技术进展与思考[J]. 给水排水, 2022, 58(9): 157-164. [4] 王二松, 宫永伟, 周国华. 基于SWMM的天津市某海绵型建筑小区径流水量水质效果模拟分析[J]. 环境工程, 2023, 41(12): 48-53,115. [5] 陈嫣. 日本大城市雨水综合管理分析和借鉴[J]. 中国给水排水, 2016, 32(10): 42-47. [6] BRZEZIŃSKA A, ZAWILSKI M, SAKSON G, et al. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring[J]. Environmental Monitoring and Assessment, 2016, 188(9): 502. [7] AL AUKIDY M, VERLICCHI P. Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area[J]. Science of the Total Environment, 2017, 607/608: 483-496. [8] 袁尚, 廖华丰, 张碧波, 等. 武汉市机场河末端大型CSO调蓄池的工艺设计[J]. 中国建筑金属结构, 2023, 22(增刊2): 137-144. [9] 席广朋, 王建龙, 赵梦圆, 等. 城市雨水调蓄池水质控制效果及其影响因素分析[J]. 环境工程, 2018, 36(12): 98-102. [10] POCHWAT K, PIZZO H. Analysis of the hydraulic efficiency of a steerable detention tank—simulation studies[J]. Hydrology, 2022, 9(12): 217. [11] 王东赢, 王伟, 张会, 等. 基于SWMM模型的雨水调蓄池调蓄量及数量优化[J]. 给水排水, 2022, 58(10): 84-88,125. [12] 王建龙, 张长鹤, 席广朋. 基于多目标遗传算法的城市内涝调蓄池规模优化方法研究[J]. 环境工程, 2023, 41(6): 166-173. [13] 王梦迪, 徐得潜, 陈国炜. 控制径流污染雨水调蓄池优化设计研究[J]. 工业用水与废水, 2021, 52(6): 33-37,78. [14] 赵泽佳, 邵转娣, 韦甜甜, 等. 海绵城市主要低影响开发措施碳排放核算方法构建与碳减排路径分析[J]. 广东土木与建筑, 2024, 31(2): 1-6,37. [15] 胡方旭, 卢亚静, 周星, 等. 典型老城区海绵城市建设碳减排效益评估[J]. 中国给水排水, 2024, 40(3): 130-136. [16] 邹安平. 合流制溢流污染调蓄池设计容积数值模拟[J]. 中国给水排水, 2022, 38(5): 116-121. [17] 王红武, 闫明, 翟月娇, 等. 平原河网城市雨水排水系统弹性评价[J]. 环境工程, 2023, 41(12): 61-69,255. [18] 胡云进, 包家豪, 郜会彩. 基于SWMM的老旧小区海绵化改造适用技术研究[J]. 水电能源科学, 2024, 42(1): 27-31. [19] 孙铮, 王建龙, 张长鹤, 等. 基于SWMM模型的城市已建区排水防涝提标改造途径探讨[J]. 环境工程, 2022, 40(9): 199-207. [20] 徐成剑, 胡胜利. 武汉市东湖水环境提升工程CSO调蓄池规模模拟研究[J]. 水利水电快报, 2021, 42(12): 124-129. [21] 邢睿磊. 调蓄池控制合流制溢流污染的作用及设计要点分析[J]. 四川环境, 2023, 42(6): 239-245. [22] 唐文锋, 胡友彪, 何晓文, 等. 淮南城区传统开发模式下雨水径流水质污染特征研究[J]. 环境工程, 2017, 35(2): 53-58. [23] 林晓虎, 任婕, 乔俊莲, 等. 海绵城市建设中碳排放核算研究进展及探析[J]. 资源节约与环保, 2018(3): 42-44. [24] 朱雨, 邵薇薇, 杨志勇. 海绵设施全生命周期碳排放核算方法研究[J]. 水资源保护, 2023, 39(6): 32-38. [25] 李俊奇, 张希, 李惠民. 北京某片区海绵城市建设和运行中的碳排放核算研究[J]. 水资源保护, 2023, 39(4): 86-93. [26] 中国城镇供水排水协会. 城镇水务 系统碳核算与减排路径[M]. 北京: 中国建筑工业出版社, 2022. [27] 马洁, 武小钢. 海绵城市典型措施碳排放研究[J]. 中国城市林业, 2018, 16(2): 27-32. [28] 肖思琪. 基于污染物初期冲刷效应差异的CSOs调蓄池布局优化研究[D]. 天津:天津大学, 2021. [29] 邵泽岩, 冯燕. 基于SWMM的雨水调蓄池容积研究[J]. 工业用水与废水, 2017, 48(4): 47-50. [30] 程江, 许莉, 潘炜, 等. 雨水调蓄池容积设计标准及其污染减排效益研究[J]. 中国给水排水, 2013, 29(23): 166-170. [31] 焦春蛟, 吕谋, 张士官, 等. 不同模式雨水调蓄池与低影响开发组合对雨洪控制的效果[J]. 科学技术与工程, 2019, 19(34): 336-342. [32] 席慕凡, 王先锋, 黎世荇, 等. 基于SWMM模型的城市初期雨水调蓄设施优化设计模拟[J]. 工业用水与废水, 2023, 54(3): 42-46. [33] 张青文, 余健. 初雨调蓄池布置方式对管道沉积物污染控制研究[J]. 中国给水排水, 2022, 38(19): 114-119. [34] 何磊. 初小雨分散调蓄系统在水环境整治工程中的应用[J]. 中国给水排水, 2024, 40(6): 118-125. [35] 熊园, 黄翔峰, 魏忠庆, 等. 基于区域特征的水质调蓄池运行规则优化[J]. 中国给水排水, 2023, 39(13): 126-132. [36] 李江云, 蒋颖龄, 李瑶, 等. 低影响开发措施的调蓄池代用模型应用研究[J]. 武汉大学学报(工学版), 2023, 56(2): 197-203. [37] 黄泽益. PP模块调蓄池在城市防洪排涝建设中的应用[J]. 云南水力发电, 2024, 40(3): 163-166. [38] 刘安营. 节能绿色环保建筑材料在工程中的应用[J]. 石材, 2024(7): 132-134. [39] 梁飞鹏, 谭显英, 顾潇. 某大型雨水泵站与调蓄池合建工程设计[J]. 城市道桥与防洪, 2021(6): 146-150,160.
点击查看大图
计量
- 文章访问数: 21
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0