中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究

娄明月 刘广兵 刘伟京 孟溪 施梦琦 郭明辰

娄明月, 刘广兵, 刘伟京, 孟溪, 施梦琦, 郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究[J]. 环境工程, 2024, 42(11): 61-71. doi: 10.13205/j.hjgc.202411007
引用本文: 娄明月, 刘广兵, 刘伟京, 孟溪, 施梦琦, 郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究[J]. 环境工程, 2024, 42(11): 61-71. doi: 10.13205/j.hjgc.202411007
LOU Mingyue, LIU Guangbing, LIU Weijing, MENG Xi, SHI Mengqi, GUO Mingchen. RESEARCH ON CARBON EMISSION ACCOUNTING METHOD FOR TYPICAL WASTEWATER COLLECTION UNITS BASED ON ANAEROBIC CARBON CYCLE THEORY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 61-71. doi: 10.13205/j.hjgc.202411007
Citation: LOU Mingyue, LIU Guangbing, LIU Weijing, MENG Xi, SHI Mengqi, GUO Mingchen. RESEARCH ON CARBON EMISSION ACCOUNTING METHOD FOR TYPICAL WASTEWATER COLLECTION UNITS BASED ON ANAEROBIC CARBON CYCLE THEORY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 61-71. doi: 10.13205/j.hjgc.202411007

基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究

doi: 10.13205/j.hjgc.202411007
基金项目: 

江苏省碳达峰碳中和科技创新专项资金(BE2022861)

详细信息
    作者简介:

    娄明月,男,硕士,工程师,主要从事流域水环境模型研究。741847797@qq.com

    通讯作者:

    刘广兵,男,硕士,高级工程师,主要从事污水低碳水处理技术研究。66069157@qq.com

RESEARCH ON CARBON EMISSION ACCOUNTING METHOD FOR TYPICAL WASTEWATER COLLECTION UNITS BASED ON ANAEROBIC CARBON CYCLE THEORY

  • 摘要: 为评估污水收集系统典型单元直接碳排放能力,以江苏省南京市鼓楼区凤凰西街污水收集单元为研究对象,利用有机物分子结构和微生物群落结构推定系统发生的厌氧反应,并通过不同种类有机物浓度变化和反应方程式系数核算碳排放。结果表明,不同排水功能区污水管道、化粪池和污水泵站有机物种类和微生物群落结构存在显著差异,导致系统碳排放能力存在显著差异。核算发现化粪池碳排放量最大,其次是污水管道,污水泵站最小,平均CO2排放量分别为169.0,11.6,5.1 mg/m3,平均CH4排放量分别为18.9,7.5,2.0 mg/m3。该研究成果可为污水收集处理行业控制温室气体排放、分析碳减排能力、设置碳强度削减目标、分解落实考核指标提供更为科学的技术手段参考。
  • [1] 郝晓地, 张益宁, 李季, 等. 下水道甲烷释放模型评价与内在控制分析[J]. 中国给水排水, 2023, 39(17): 1-9.
    [2] KYUNG D, KIM D, YI S, et al. Estimation of greenhouse gas emissions from sewer pipeline system[J]. International Journal of Life Cycle Assessment, 2017, 22: 1901-1911.
    [3] 王钊越, 赵夏滢, 唐琳慧, 等. 城市污水收集与处理系统碳排放监测评估技术研究进展[J].环境工程, 2022, 40(6): 77-82

    , 161.
    [4] CHEN H, YE J F, ZHOU Y F, et al. Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers: an assessment of the role of dissolved organic matter components and microbiota[J]. Environmental Pollution, 2020, 263: 114489.
    [5] JIN P K, GU Y G, SHI X, et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnology for biofuels, 2019, 12: 1-11.
    [6] GUISASOLA A, SHARMA K R, KELLER J, et al. Development of a model for assessing methane formation in rising main sewers[J]. Water Research, 2009, 43(11): 2874-2884.
    [7] JIANG G M, SHARMA K R, YUAN Z G. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor[J]. Water research, 2013, 47(5): 1783-1792.
    [8] 郝晓地, 杨文宇, 林甲. 不可小觑的化粪池甲烷碳排量[J]. 中国给水排水, 2017, 33(10): 28-33.
    [9] 张远, 吕淑然, 杨凯, 等. 城市污水管道甲烷爆炸防控对策研究现状及展望[J]. 安全与环境工程, 2015, 22(5): 134-138.
    [10] 胡修稳. 重庆主城区污水管道气体安全风险评估模型研究[D]. 重庆:重庆大学, 2012.
    [11] Intergovernmental Panel on Climate Change(IPCC). 2006 IPCC National Greenhouse Gas Inventory Guidelines[S]. 2006.
    [12] Intergovernmental Panel on Climate Change(IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[S]. 2019.
    [13] YONO B, SYAICHURROZI I, SUMARDIONO S. Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7: 2798-2805.
    [14] WILLIS J, BROWER B, GRAF W, et al. Manuscript:new GHG methodology to quantify sewer methane[C]//Water Environment Federation 91st Annual Water Environment Federation Technical Exhibition and Conference, Alexandria: Water Environment Federation, 2018: 4745-4752.
    [15] LI W K, ZHENG T L, MA Y Q, et al. Current status and future prospects of sewer biofilms: their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815.
    [16] 孙征. 重力流污水管网硫化物产生特征及沉积相中微生物分析[D]. 西安:长安大学, 2019.
    [17] 张程. 污水处理系统碳排放规律研究与量化评价[D]. 西安:西安理工大学, 2017.
    [18] 杨世琪. 城镇污水处理系统碳核算方法与模型研究[D]. 重庆:重庆大学, 2013.
    [19] GOSSET-ERARD C, AUBRIET F, LEIZE-WAGNER E, et al. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: the art of compromises and the possible-A review[J]. Talanta, 2023, 257: 124324.
    [20] LV L L, HUANG H L, LV J T, et al. Unique dissolved organic matter molecules and microbial communities in rhizosphere of three typical crop soils and their significant associations based on FT-ICR-MS and high-throughput sequencing analysis[J]. Science of The Total Environment, 2024, 919: 170904.
    [21] 马超, 吴建勋, 倪洪星, 等. 基于FT-ICR MS表征煤焦化废水处理过程有机物分子组成变化[J]. 质谱学报, 2023, 44(3): 387-396.
    [22] 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
    [23] 刘伟, 石烜, 徐栋伟, 等. 流速对污水管道中甲烷与硫化物生成的影响[J]. 中国环境科学, 2023, 43(6): 2938-2947.
    [24] GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water research, 2014, 48: 569-578.
    [25] XU J W, HE Q, LI H, et al. Modeling of methane formation in gravity sewer system: the impact of microorganism and hydraulic condition[J]. AMB Express, 2018, 8: 1-10.
    [26] GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
    [27] 王洵, 廖琴, 王沛芳, 等. 水库水深变化对不同浮游微生物群落及网络互作关键种的影响[J]. 环境科学, 2023, 44(7): 3881-3891.
    [28] NI B J, YUAN Z G. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes[J]. Water Research, 2015, 87: 336-346.
    [29] 石烜. 城市污水管网污染物转化与生物代谢机制研究[D]. 西安:西安建筑科技大学, 2018.
    [30] 侯宇轩. 污水管网中真菌的繁衍特性及水力影响机制研究[D]. 西安:西安建筑科技大学, 2022.
    [31] BOSE R S, ZAKARIA B S, DHAR B R, et al. Effect of salinity and surfactant on volatile fatty acids production from kitchen wastewater fermentation[J]. Bioresource Technology Reports, 2022, 18: 101017.
    [32] SINGH R, PALAR S, KOWALCZEWSKI A, et al. Adsorptive recovery of volatile fatty acids from wastewater fermentation broth[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110507.
    [33] ROCHA D H D, SAKAMOTO I K, VARESCHE M B A. Evaluation of significant factors in hydrogen production and volatile fatty acids in co-fermentation of citrus peel waste and processing wastewater[J]. Fuel, 2023, 354: 129306.
    [34] RUB H A, DEGHLES A, HAMED O, et al. Cellulose based polyurethane with amino acid functionality: design, synthesis, computational study and application in wastewater purification[J]. International Journal of Biological Macromolecules, 2023, 239: 124328.
    [35] TANG J L, PU Y H, ZENG T, et al. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: performance and membrane filtration properties[J]. Bioresource Technology, 2022, 345: 126470.
    [36] ARIAS O, LIGERO P, SOTO M. Methane production potential and anaerobic treatability of wastewater and sludge from medium density fibreboard manufacturing[J]. Journal of Cleaner Production, 2020, 277: 123283.
    [37] MORAIS N W S, COELHO M M H, E SILVA A S, et al. Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture[J]. Environmental Pollution, 2021, 280: 116876.
    [38] LOI T H, HIDENORI H, SHIGEO F, et al. Greenhouse gas emissions from blackwater septic systems[J]. Environmental Science & Technology, 2021, 55: 1209-1217.
    [39] 陈少林, 王恺, 刘赫南, 等. 深圳地区化粪池设计重难点分析及研究—暨智慧监测系统在排水系统中的运用[J]. 给水排水, 2023, 59(增刊1): 5-8.
    [40] 任俊豪, 殷伟民, 贺酰淑, 等. 水力条件对污水管网沉积层中SRB与MA的影响[J]. 中国给水排水, 2022, 38(23): 17-22.
    [41] 唐柏杨, 宣干, 杨诗瑶, 等. 重新审视化粪池的温室效应:回顾与展望[J]. 环境工程, 2023, 41(7): 14-21.
    [42] MICHAEL D. S, ALEXANDER D, KIRSTEN W, et al. Dissolved methane in the influent of three Australian wastewater treatment plants fed by gravity sewers[J]. Science of the Total Environment, 2017, 599: 85-93.
    [43] LIU Y W, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109-118.
    [44] 中国城镇供水排水协会. 城镇水务系统碳核算与减排路径技术指南[M]. 北京:中国建筑工业出版社, 2022.
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 网络出版日期:  2025-01-16

目录

    /

    返回文章
    返回