STUDY ON COLLABORATIVE TREATMENT SOLUTIONS OF KITCHEN WASTE IN SEWAGE PLANTS
-
摘要: 城市有机固体废弃物处理是我国无废城市建设的重点和难点。针对厨余垃圾(350t/d)、粪渣(50 t/d)、园林绿化垃圾(80 t/d)、污泥(300 t/d)的处理需求,设计了5种可在污水厂有限预留用地上进行水固协同处理的技术方案,所采用的技术包括高温好氧干化/发酵+制备RDF/有机肥、定向发酵提取商品碳源、湿式空气氧化技术,并从能耗、经济性、碳减排和污水厂承载能力4个方面进行了综合评估。研究表明:采用反应器式高温好氧干化/发酵+制备RDF/有机肥技术处理厨余垃圾和粪渣虽然加热电耗较高,但在经济上可行,且具有碳减排效应,如果通过水源热泵回收污水厂中水或尾水的热量,则总电耗可降低25%~30%,运行成本可降低3%~5%,碳排放可降低10%~18%,体现了水固协同方案的节能优势;结合定向发酵制备碳源技术可进一步降低运行成本,增加碳减排效应;在引入绿化垃圾的处理后,运行成本可降至403元/t,碳减排量可增至98.5 t CO2 eq/d,是目前可采用的最优方案。湿式氧化技术方案在运行成本和碳减排效应方面显著优于其他方案,可作为未来的替代技术进行研究。Abstract: The treatment of municipal organic solid waste is a key factor in the construction of zero waste city in China. Aiming at the comprehensive treatment needs of kitchen waste (350 t/d), manure residue (50 t/d), garden greening waste (80 t/d) and sludge (300 t/d), this study designed five kinds of technical solutions for water-solid collaborative treatment on the limited reserved land of sewage treatment plants. Several technologies were used, including high-temperature aerobic drying/fermentation + RDF/organic fertilizer preparation, anaerobic fermentation to extract commercial carbon sources, and wet air oxidation technology. In addition, five methods were evaluated in terms of energy consumption, economy, carbon emission reduction, and sewage plant capacity. The results show that it is economically feasible to use high-temperature aerobic drying/fermentation + RDF/organic fertilizer preparation to treat kitchen waste and manure. If the heat of water or tailwater in a sewage plant is recovered by a water source heat pump, the total power consumption can be reduced by 25%~30%, the operating cost by 3%~5%, and carbon emission by 10%~18%, which reflects the energy saving advantage of the water-solid collaborative solution. Combined with anaerobic fermentation to extract carbon sources, it can further reduce the operating cost and increase the carbon emission reduction effect. After the introduction of green waste treatment, the operating cost can be reduced to 403 yuan/ton, and the carbon emission reduction can be increased to 98.5 t CO2-eq/d, which is the best solution available at present. The wet oxidation technology solution is significantly superior to other solutions in terms of operating cost and carbon reduction effect and can be developed as an alternative technology in the future.
-
[1] 赵刚. 污水处理厂协同处理餐厨垃圾的策略和影响分析[J]. 中国市政工程,2022(1): 41-44, 122. [2] 陈小华.污泥和餐厨垃圾协同处理工程厌氧消化系统的启动调试[J].净水技术,2018,37(6):86-90. [3] WEHNER M, LICHTMANNEGGER T, ROBRA S, et al. The economic efficiency of the co-digestion at WWTPs: a full-scale study[J].Waste Management, 2021, 133:110-118. [4] 王腾飞. 餐厨垃圾水热碳化机制及生物炭的清洁和成型提质特性研究[D]. 长沙:湖南大学, 2019. [5] 李文卓,刘慧卿,杨伟,等.污水源热泵技术应用和效益分析[J].能源与节能,2022(11):88-91,212. [6] FENG K, LI H, ZHENG C Z. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste[J]. Bioresource Technology, 2018, 270: 180-188. [7] YANG L X, CHEN L, LI H,et al. Lactic acid production from mesophilic and thermophilic fermentation of food waste at different pH[J].Journal of Environmental Management, 2022,304:114312. [8] 李德彬,周平,吴毅晖, 等.污水厂污泥湿式空气氧化的研究进展[J].化工环保,2022,42(1):1-9. [9] 何李健,尹军,王争. 污泥好氧堆肥处理技术探讨[J]. 中国资源综合利用, 2014, 32(3):30-33. [10] 宋琪. 餐厨垃圾沼渣好氧堆肥高效液态菌剂的制备保存及其性能研究[D]. 青岛:青岛理工大学,2022. [11] 宫震,付田雨,孙好芬,等. 高级氧化技术处理印染废水研究进展[J]. 湿法冶金,2022,41(4):283-288. [12] 胡涛,杨丽,杜昕睿,等. 分布式厨余垃圾设备处理效果与环境影响调查研究[J]. 环境科学与管理,2022,47(12):96-100, 105. [13] 边向征,刘建军,冯建红. 廊坊市城镇污水处理厂污泥处置的探讨[J]. 环境与发展,2014,26(3):142-144.
点击查看大图
计量
- 文章访问数: 17
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0