RESEARCH ON LOW-CARBON COMBINATION LAYOUT OF LID FACILITIES IN RESIDENTIAL AREAS BASED ON RESPONSE SURFACE METHODOLOGY
-
摘要: 在满足年径流总量控制率的目标下,不同LID设施组合的全生命周期碳排放量不相同。为获得小区LID设施的低碳组合布置方案,将LID设施全生命周期的碳排放量和径流总量控制量的比值定义为径流总量控制量碳排放强度,构建了LID设施组合优化布置模型,以甘肃省天水市某居住区为研究对象,对单一LID设施的碳排放强度进行研究,并采用响应面法优化了小区LID设施组合方案。单一LID设施研究表明:绿色屋顶的碳排放强度最小,为-0.85~-3.38 kg CO2/m3,透水铺装的最大,为0.26~0.77 kg CO2/m3。组合方案的优化结果表明:绿色屋顶占屋面面积54.93%、透水铺装占路面面积66.90%、雨水花园占绿地面积36.30%时,小区LID设施碳排放强度最小,为-1.58 kg CO2/m3,年径流总量控制率为91.85%。从低碳建设的角度出发,应优先布置最大面积比例的绿色屋顶,在年径流总量控制量达不到要求时,再优先考虑增加适当面积的雨水花园,透水铺装最后考虑。研究成果为低影响开发设施的低碳布置提供了理论基础和技术支撑。
-
关键词:
- LID设施组合 /
- 径流总量控制量碳排放强度 /
- 全生命周期碳排放 /
- 响应面法
Abstract: Under the goal of satisfying the total annual runoff control rate, the full life cycle carbon emissions of different LID facility combinations are not the same. In order to obtain a low-carbon combination arrangement scheme of LID facilities in a residential area, the ratio of the whole life cycle carbon emissions of LID facilities to the total runoff control volume was defined as the carbon emission intensity of total runoff control volume, and a model of optimal arrangement of LID facility combinations was constructed to study the carbon emission intensity of a single LID facility in a residential area in Tianshui City, Gansu Province, the research object, and the response surface method was used to optimize the LID facility combination scheme for the residential area. The results of the single LID facility study showed that the carbon emission intensity of green roof was the smallest, ranging from -0.85 kg CO2/m3 to -3.38 kg CO2/m3, and that of permeable paving was the largest, ranging from 0.26 kg CO2/m3 to 0.77 kg CO2/m3. The optimization results of the combination scheme showed that the green roof accounted for 54.93% of the roofing area, permeable paving accounted for 66.90% of the paving area, and rain gardens accounted for 36.30% of the green space area, and then the carbon emission intensity of the community LID facilities was the smallest, -1.58 kg CO2/m3, and the total annual runoff control rate was 91.85%. From the perspective of low-carbon construction, a large area proportion of green roofs should be arranged with the highest priority; and when the total annual runoff control rate fails to meet the requirements, priority should be given to increasing rain garden area appropriately; and permeable paving should be considered last. The research results provide a theoretical basis and technical support for the low-carbon arrangement of low-impact development facilities. From the perspective of low-carbon construction, priority should be given to the arrangement of green roofs with the largest area proportion. When the total annual runoff control rate cannot meet the requirements, priority should be given to rain gardens with appropriate areas, and permeable pavement should be less considered. The research results provide a theoretical basis and technical support for the low-carbon layout of low impact development facilities. -
[1] 任南琪, 张建云, 王秀蘅. 全域推进海绵城市建设,消除城市内涝,打造宜居环境[J]. 环境科学学报, 2020, 40(10): 3481-3483. [2] 姜勇, 李海军, 成钢. 基于源头管控的武汉海绵城市规划实施评估[J]. 中国给水排水, 2023, 39(18): 44-48. [3] 郭超, 王璐瑶, 谢潇. 海绵城市LID设施运行效能衰减机理及寿命分析研究综述[J]. 水资源与水工程学报, 2022, 33(5): 45-52,61. [4] 鲁修为. 海绵城市理念下城市低影响开发排水系统设计研究[D]. 武汉:武汉工程大学, 2019. [5] 李俊奇, 孙梦琪, 李小静. 生物滞留设施对雨水径流热污染控制效果试验[J]. 水资源保护, 2022, 38(4): 6-12. [6] 章林伟. 中国海绵城市的定位、概念与策略:回顾与解读国办发[2015] 75号文件[J]. 给水排水, 2021, 57(10): 1-8. [7] SU X, SHAO W W, LIU J H. How does sponge city construction affect carbon emission from integrated urban drainage system?[J]. Journal of Cleaner Production, 2022, 363:132595. [8] 林晓虎, 任婕, 乔俊莲. 海绵城市建设中碳排放核算研究进展及探析[J]. 资源节约与环保, 2018(3): 42-44. [9] KAVEHEI E, JENKINS G A, ADAME M F. Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 1179-1191. [10] 陈碧宜. 基于气候变化的低影响开发设施径流量和碳排放控制研究[D]. 广州:广州大学, 2022. [11] 郑涛. 居住社区海绵改造过程的碳排放核算研究[J]. 中国给水排水, 2021, 37(19): 112-119. [12] 朱雨, 邵薇薇, 杨志勇. 海绵设施全生命周期碳减排效应评估:以迁安安顺家园为例[J]. 水资源保护,2023,39(6): 32-38. [13] 李俊奇, 张希, 李惠民. 北京某片区海绵城市建设和运行中的碳排放核算研究[J]. 水资源保护, 2023, 39(4): 86-93. [14] SHAO W W, LIU J H, YANG Z Y. Carbon reduction effects of sponge city construction: a case study of the City of Xiamen[J]. Energy Procedia, 2018, 152:1145-1151. [15] LIU J, WANG J, DING X. Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system[J]. Applied Energy, 2020, 278: 115686. [16] 李晨璐, 郑涛, 彭开铭. 基于全生命周期法的海绵城市雨水系统碳排放研究[J]. 环境与可持续发展, 2019, 44(1): 132-137. [17] 中华人民共和国住房和城乡建设部,国家市场监督管理总局. 室外排水设计标准:GB 50014—2021[S]. 北京:中国计划出版社, 2021. [18] 中华人民共和国住房和城乡建设部. 海绵城市建设技术指南——低影响开发雨水系统构建 (试行)[D]. 北京:中国建筑工业出版社, 2014. [19] 中华人民共和国住房和城乡建设部, 中国气象局. 城市暴雨强度公式编制和设计暴雨雨型确定技术导则[M]. 北京: 气象出版社, 2014. [20] MOHD S L, SHAKIRAH J A, ABDUL M W H A W. High-resolution hydrological-hydraulic modeling of urban floods using InfoWorks ICM[J]. Sustainability, 2021, 13(18): 10259. [21] 刘华超, 梁风超, 徐薇. 基于Infoworks ICM的城市排水(雨水)系统排水能力及内涝风险评估[J]. 城市道桥与防洪, 2021, (12): 71-74. [22] 戎贵文, 甘丹妮, 李姗姗. 不同LID设施的面积比例优选及径流污染控制效果[J]. 水资源保护, 2022, 38(3): 168-173,204. [23] 蒋海红. 基于Infoworks ICM模型的万州城区海绵城市试点建设雨水径流总量模拟分析[D]. 重庆:重庆交通大学, 2019. [24] 吕凤维, 陈垚, 刘非. 不同空间布局下LID设施径流控制效果模拟研究[J]. 中国农村水利水电, 2023(3): 120-129,43. [25] 吕永鹏. 《城镇内涝防治系统数学模型构建和应用规程》解读[J]. 给水排水, 2020, 56(5): 149-153. [26] 李俊奇, 张希, 李惠民. 北京某片区海绵城市建设和运行中的碳排放案例研究[J]. 水资源保护:9(4): 86-93. [27] 张希. 城市雨水系统全生命周期碳排放核算方法及应用研究[D]. 北京:北京建筑大学, 2023. [28] 马洁. 海绵城市建设典型措施的碳源解析和碳排放研究[D]. 太原:山西农业大学, 2018. [29] 张孝存. 绿色建筑结构体系碳排放计量方法与对比研究[D]. 哈尔滨:哈尔滨工业大学, 2014. [30] REDDY L V A, WEE Y J, YUN J S. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches[J]. Bioresource Technology, 2008, 99(7): 2242-2249. [31] 刘秀芸. 重金属吸附剂巯基乙酰化玉米秸秆除铜性能研究[D]. 兰州:兰州交通大学, 2022. [32] OU J X, LI J Q, LI X J. Planning and design strategies for green stormwater infrastructure from an urban design perspective[J]. Water, 2023, 16(1): 29. [33] 田敏, 任建民, 刘碧云. 基于SWMM模型与成本效益的LID径流控制效果研究[J]. 水文, 2023, 43(5): 89-94,100. [34] MOORE T L C, HUNT W F. Predicting the carbon footprint of urban stormwater infrastructure[J]. Ecological Engineering, 2013, 58: 44-51. [35] 马洁, 武小钢. 海绵城市典型措施碳排放研究[J]. 中国城市林业, 2018, 16(2): 27-32. [36] IAN C, JOHN K, 崔玉忠. 传统路面与透水混凝土路面砖路面隐含碳量的评价[J]. 建筑砌块与砌块建筑, 2012(3): 32-35,25. [37] 郑克白, 徐宏庆, 康晓鹍.北京市《雨水控制与利用工程设计规范》解读[J]. 给水排水, 2014, 50(5): 55-60. [38] 龙昊宇, 黄彬彬, 翁白莎. MnO2@Fe3O4/石墨烯复合材料对水中Pb(Ⅱ)的吸附[J]. 中国环境科学, 2020, 40(7): 2888-2900. [39] 宋永伟, 罗浩伟, 杨俊. Behnken设计优化制备高比表面积柚皮基生物炭及其亚甲基蓝吸附机理研究[J]. 中国环境科学(12): 6363-6373. [40] 陈洁. 典型LID设施对地表径流控制过程的模拟研究[D]. 天津:天津大学, 2022. [41] ZHAO Z H, LIU C Q, XIE H. Carbon accounting and carbon emission reduction potential analysis of sponge cities based on life cycle assessment[J]. Water, 2023, 15(20): 3565. [42] 范俊鹏. 海绵城市理论下的沣西新城绿色屋顶设计研究[D]. 西安:西安建筑科技大学, 2021.
点击查看大图
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 0