RESEARCH ON WATER NETWORK OPTIMIZATION OF HIGH-TECH INDUSTRIAL PARKS FACING LOW-CARBON CONSTRAINTS
-
摘要: 探索高新产业园区的绿色发展模式对于引领全国高新技术产业的转型至关重要,污水低碳近零排放是在碳达峰碳中和新形势下,推动高新产业园区能源结构转型的有效措施。然而,现阶段高新产业园区污水低碳近零排放的研究多关注局部单元的减排和改进,忽略了园区尺度上水系统中各单元的水循环利用和碳排放过程的协同,缺少园区整体低碳近零排放的实践。因此,研究以江苏省某高新产业园区整体为研究对象,在系统解析园区典型产业的水系统用水、排水特征和碳排放现状的基础上,开展了面向低碳约束的高新产业园区水网络优化研究,进一步提出了根据产业发展现状和水资源禀赋,灵活组合应用分质利用-源头减碳、资源回收-强化减碳、节能减排-能源再生、深度净化-生态回用、再生利用-综合控碳的"五级处理-五级减碳"园区污水低碳近零排放的新模式,为高新产业园区绿色可持续发展提供了行之有效的实践路径。Abstract: Exploring the green development model for high-tech industrial parks is crucial to leading the transformation of high-tech industries over China. Low-carbon and near-zero sewage emissions are an effective measure to promote the transformation of the energy structure of high-tech industrial parks under the new situation of carbon peak and carbon neutrality. However, the current research milieu predominantly concentrates on enhancing the efficacy of wastewater treatment and recycling technologies at the local unit level, often overlooking the integrated management of water recycling and carbon emission dynamics across various water-related subsystems at the park-wide scale. This oversight hinders the holistic implementation of low-carbon, near-zero emission practices within the park, thereby impeding the development of a truly sustainable, low-carbon park environment. In light of these challenges, the present study adopts a high-tech industrial parks as its focal point, systematically scrutinizes the water usage patterns, effluent characteristics, and carbon footprint of representative industries within the park, and endeavors to optimize the water network within the industrial park under the constraints of low-carbon objectives. Furthermore, it introduces an innovative model for achieving low-carbon, near-zero emission sewage management in the park. This model, termed "five-level treatment-five-level carbon reduction," is tailored to the existing industrial and hydrological profiles. It adeptly integrates and leverages a spectrum of strategies including "Differentiated utilization-source carbon reduction, Resource recovery-enhanced carbon reduction, Energy conservation and emission reduction-energy regeneration, Deep purification-ecological reuse, Recycling-comprehensive carbon control". This multifaceted approach aims to provide a viable and actionable roadmap for the green and sustainable evolution of high-tech industrial parks, aligning with the broader goal of environmental stewardship and carbon neutrality.
-
[1] LEI Y, WANG Z, WANG D, et al. Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy[J]. Nature Climate Change, 2023, 13(7): 693. [2] 中华人民共和国工业和信息化部规划司. 中关村论坛有关情况[EB/OL]. (2024-04-17) [2024-07-05]. http://www.news.cn/fortune/20240417/ce06beb86bc24aac871a93b9eb422baf/c.html. [3] GUO Y, TIAN J, CHEN L, et. al. The role of industrial parks in mitigating greenhouse gas emissions from China[J]. Environmental science & technology, 2018, 52(14): 7754-7762. [4] 惠辞章, 张文龙, 王玉明, 等. 基于"五级处理-五级回用"的高新区污水近零排放新模式[J]. 环境工程, 2022, 40(7): 193-199. [5] 陈艳波, 张宁, 李嘉祺, 等. 零碳园区研究综述及展望[J]. 中国电机工程学报: 2024, 44(14):5496-5516. [6] 赵荣钦,余娇,肖连刚, 等.基于"水—能—碳"关联的城市水系统碳排放研究[J]. 地理学报, 2021, 76(12):3119-3134. [7] 唐振兴.给水系统中碳排放核算及减碳路径分析[J]. 节能与环保, 2023(10):30-35. [8] 张永韬,曹卉,檀科明.湖北某县城长江大保护项目污水管网碳排放量测算探究[J]. 环境保护与循环经济, 2023, 43(6):94-98. [9] 郝晓地, 张益宁, 李季, 等. 污水处理能源中和与碳中和案例分析[J]. 中国给水排水, 2021, 37(20): 1-8. [10] 孙猛, 杨佳林, 肖彭誉, 等. 城市污水低碳和资源化技术进展与新趋势[J]. 环境工程学报, 2023, 17(6): 1748-1760. [11] 李轩,苑心,门聪,等.城市河流CH4和N2O产生及排放研究进展[J].环境科学,2024,45(8):4932-4945. [12] 周鑫, 陈明扬, 罗彬, 等. 近零碳排放园区建设思路和对策建议[J]. 四川环境, 2023, 42(5): 268-273. [13] TONG T, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. [14] 中国城镇供水排水协会. 城镇水务系统碳核算与减排路径技术指南[M].北京:中国建筑工业出版社,2022. [15] 生态环境局,国家统计局. 2021年电力二氧化碳排放因子[EB/OL].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202404/t20240412_1070565.html.2024-11-24. [16] HAN M, WEI X, WANG R, et al. Recycling Cu(Ⅱ) from complexing copper wastewater using ferrous sulfide stabilized by carboxymethyl cellulose: efficiency and mechanism insights[J/OL]. Separation and Purification Technology, 2024, 330. DOI: 10.1016/j.seppur.2023.125209. [17] HAN M, HE J, WEI X, et al. Deep purification of copper from Cu(Ⅱ)-EDTA acidic wastewater by Fe(Ⅲ) replacement/diethyldithiocarbamate precipitation[J]. Chemosphere, 2022: 300. [18] LI S, YUE T, SUN W, et al. Intense removal of Ni(Ⅱ) chelated by EDTA from wastewater via Fe(Ⅲ) replacement-chelating precipitation[J]. Process Safety and Environmental Protection, 2022, 159: 1082-1091. [19] 戴铁军, 潘永刚, 张智愚, 等. 再生资源回收利用与碳减排的定量分析研究[J]. 资源再生, 2021(3): 15-20. [20] YOO E, LEE U, KELLY J C, et al. Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery[J]. Resources Conservation and Recycling, 2023: 196. [21] 焦在强, 崔垚, 闫兴国, 等. 光伏电站项目全生命周期碳排放研究[J]. 中国资源综合利用, 2023, 41(10): 158-160.
点击查看大图
计量
- 文章访问数: 8
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0