COMMUNITY CHARACTERISTICS AND INFLUENCING FACTORS OF METHANOGENS IN CASCADE RESERVOIRS IN THE UPPER YELLOW RIVER
-
摘要: 水库是甲烷(CH4)的重要来源,了解水库沉积物中产甲烷菌群落特征及其影响因素对于理解水库CH4排放机制具有重要意义。分别于2023年5月(枯水期)和8月(丰水期)对黄河上游10座梯级水库表层沉积物样品进行采集,采用16S rRNA高通量测序技术、统计分析和零模型探究了不同季节黄河上游梯级水库沉积物中产甲烷菌群落特征、多样性及其群落构建过程。结果表明:1)黄河上游梯级水库沉积物枯水期以甲烷杆菌属(Methanobacterium)为优势种,丰水期以甲烷八叠球菌属(Methanosarcina)为优势种;2)库龄对黄河上游梯级水库产甲烷菌群落α多样性产生了显著影响(P<0.05),季节对产甲烷菌群落β多样性产生了显著影响(P<0.05);3)影响沉积物产甲烷菌群落组成的环境因素主要为pH、TN和温度,产甲烷菌群落构建以随机性过程为主导,其中漂移作用最强(54.25%)。研究结果可为深入理解水库CH4排放机制及其调控提供科学依据。Abstract: Reservoir is an important source of methane (CH4) emissions. The community structure of methanogens in reservoir sediments and its influencing factors are of great significance for understanding the mechanism of CH4 emissions. Surface sediment samples from 10 cascade reservoirs in the upper Yellow River were collected in May (dry season) and August (wet season) in 2023. 16S rRNA high-throughput sequencing technology, statistical analysis and null model were used to investigate the community characteristics, diversity and community assembly processes of methanogens in sediments of the cascade reservoirs in the upper Yellow River in different seasons. The results showed that: 1) in the dry season, Methanobacterium is the dominant genus, while in the wet season, Methanosarcina takes over as the dominant genus; 2) the reservoir age had a significant effect on α diversity of the methanogenic bacteria community (P<0.05), while the season had a significant effect on β diversity of methanogenic bacteria community (P<0.05); 3) the main environmental factors affecting the composition of methanogenic communities were pH, total nitrogen and temperature. The stochastic process dominated methanogenic community assembly processes, in which drift was the strongest (54.25%). The research findings provide scientific insights for understanding the mechanisms of CH4 emissions from reservoirs and their regulation.
-
Key words:
- sediment /
- CH4 /
- community composition /
- community assembly /
- Qinghai-Tibet Plateau
-
[1] 李煜珊, 李耀明, 欧阳志云. 产甲烷微生物研究概况[J]. 环境科学, 2014, 35(5): 2025-2030. [2] 聂明. 气候变暖下水圈甲烷排放及其微生物学机制[J]. 微生物学报, 2020, 60(9): 1821-1833. [3] ROSENTRETER J A, BORGES A V, DEEMER B R, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources[J]. Nature Geoscience, 2021, 14(4): 225-230. [4] SAUNOIS M, STAVERT A, POULTER B I, et al. The global methane budget 2000—2017[J]. Earth System Science Data, 2020, 12(3): 1561-1623. [5] 徐永春. 国际能源署呼吁降低甲烷排放量[J]. 电力科技与环保, 2024, 40(2): 190. [6] DEAN J F, MIDDELBURG J J, ROCKMANN T, et al. Methane feedbacks to the global climate system in a warmer world[J]. Reviews of Geophysics, 2018, 56: 207-250. [7] BASTVIKEN D, TRANVIK L J, DOWNING J A, et al. Freshwater methane emissions offset the continental carbon sink[J]. Science, 2011, 331(6013): 50. [8] 蔡博峰, 朱松丽, 于胜民, 等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11. [9] CHEN Q, CHEN J G, WANG J F, et al. In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China[J]. Science of the Total Environment, 2019, 666: 39-45. [10] 姜怡如, 高峥, 李明聪. 水生生态系统中金属依赖型甲烷厌氧氧化过程的研究进展[J]. 微生物学通报, 2020, 47(10): 3318-3328. [11] 廖珣, 李彦澄, 张玉多, 等. 基于甲烷氧化菌的地下水硝酸盐还原效能及功能微生物研究[J]. 环境工程, 2024, 42(2): 113-120. [12] YAVITT J B, YASHIRO E, CADILLO-QUIROZ H, et al. Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America[J]. Biogeochemistry, 2012, 109(1): 117-131. [13] GARCIA J, PATEL B K C, OLLIVIER B. Taxonomic, phylogenetic, and ecological diversity of Methanogenic archaea[J]. Anaerobe, 2000, 6(4): 205-226. [14] RUDD J, HARRIS R, KELLY C, et al. Are hydroelectric reservoirs significant sources of greenhouse gases?[J]. Journal of the Human Environment, 1993, 22(4): 246-248. [15] YANG D W, SHAO W W. Analysis of water resources variability in the Yellow River of China using a distributed hydrological model[J]. IAHS Publication, 2008: 228-233. [16] 国家环境保护总局《水和废水监测分析方法委员会》. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [17] 国家环境保护局. 土壤 有机碳的测定 重铬酸钾氧化-分光光度法: HJ 615—2011[S]. 北京: 中国环境科学出版社, 2011. [18] 国家环境保护局. 土壤 质量全氮的测定 凯氏法: HJ 717—2014[S]. 北京: 中国环境科学出版社, 2014. [19] 国家环境保护局. 土壤 总磷的测定 碱熔-钼锑抗分光光度法: HJ 632—2011[S]. 北京: 中国环境科学出版社, 2011. [20] 国家环境保护局. 土壤 pH 值的测定 电位法: HJ 962—2018[S]. 北京: 中国环境科学出版社, 2018. [21] 国家环境保护局. 水质 pH值的测定 电极法: HJ 1147—2020[S]. 北京: 中国环境科学出版社, 2020. [22] 国家环境保护局. 水质 总有机碳的测定 燃烧氧化—非分散红外吸收法: HJ 501—2009[S]. 北京: 中国环境科学出版社, 2009. [23] 国家环境保护局. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012. [24] 国家环境保护局. 水质 总磷的测定 钼酸铵分光光度法: GB 11893—89[S]. 北京: 中国环境科学出版社, 1990. [25] 罗奉奉, 付跃, 李书安, 等. 龙江沉积物细菌群落及其对环境差异响应分析[J]. 环境科学与技术, 2023, 46(6): 34-44. [26] SLOAN W T, LUNN M, WOODCOCK S, et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure[J]. Environmental Microbiology, 2006, 8(4): 732-740. [27] STEGEN J C, LIN X, FREDRICKSON J K, et al. Estimating and mapping ecological processes influencing microbial community assembly[J]. Frontiers in Microbiology, 2015, 6:370. [28] 李思琦, 臧昆鹏, 宋伦. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展[J]. 海洋环境科学, 2020, 39(3): 488-496. [29] 刘浩, 许秋彤, 王春生, 等. 大洋表层沉积物中甲烷代谢古菌群落的组成及分布特征[J]. 海洋学报,2023, 45(1): 80-88. [30] 许晓晴, 陈烨, 甄毓, 等. 渤海沉积物中产甲烷途径及产甲烷菌群落特征[J]. 海洋地质与第四纪地质, 2022, 42(3): 50-61. [31] 卢思丹, 孙寓姣, 赵轩, 等. 降水对沣河水质和水体微生物的影响[J]. 环境科学, 2016, 37(7): 2563-2569. [32] SHANG Y Q, WU X Y, WANG X B, et al. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China[J]. Science of the Total Environment, 2022, 805: 150294. [33] 王炳臣. 渤海及其入海河流沉积物中铁还原菌电活性及产甲烷菌多样性的研究[D]. 烟台: 中国科学院大学, 2019. [34] 王丹丹, 黄跃飞, 杨海娇. 青藏高原东北部湖泊细菌群落结构特征季节性差异及驱动机制[J]. 湖泊科学, 2023, 35(1): 267-282. [35] TOWNSEND S A, DISBENNETT D, FERNANDEZ J M, et al. Quantifying emissions of methane derived from anaerobic organic matter respiration and natural gas extraction in Lake Erie[J]. Limnology and Oceanography, 2016, 61(S1): S356-S366. [36] DENG Y C, LIU Y Q, DUMONT M, et al. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau[J]. Microbial Ecology, 2017, 73(1): 101-110. [37] GORRES C, CONRAD R, PETERSEN S O. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat[J]. FEMS Microbiology Ecology, 2013, 85(2): 227-240. [38] WU D B, ZHAO Y, CHENG L, et al. Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China[J]. Science of the Total Environment, 2021, 786: 147515. [39] ZHU D L, SUN C, HE H. Detection methanogens in newly settled sediments from Xuanwu Lake in Nanjing, China[J]. Current Microbiology, 2012, 64(6): 539-544. [40] YANG Y Y, CHEN J F, TONG T L, et al. Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes[J]. Environmental Pollution, 2020, 260: 114106. [41] DUAN Y L, WANG X Y, WANG L L, et al. Biogeographic patterns of soil microbe communities in the deserts of the Hexi Corridor, northern China[J]. CATENA, 2022, 211: 106026. [42] WANG C, QU L R, YANG L M, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon[J]. Global Change Biology, 2021, 27(10): 2039-2048. [43] 毛楠, 刘桂民, 李莉莎, 等. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系[J]. 地球科学, 2022, 47(2): 556-567. [44] HOJ L, OLSEN R A, TORSVIL V L. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat[J]. The ISME Journal, 2008, 2(1): 37-48. [45] CAO Y, CHAI Y F, JIAO S, et al. Bacterial and fungal community assembly in relation to soil nutrients and plant growth across different ecoregions of shrubland in Shaanxi, northwestern China[J]. Applied Soil Ecology, 2022, 173: 104385. [46] LEI J, LIU C Q, ZHANG M, et al. The daily effect is more important than the diurnal effect when shaping photosynthetic picoeukaryotes (PPEs) communities in Lake Taihu at a small temporal scale[J]. FEMS Microbiology Ecology, 2021, 97(7): fiab90. [47] 杨文焕, 甄玉, 姚植, 等. 高原盐化湖泊沉积物氮代谢特征解析[J]. 中国环境科学, 2023, 43(3): 1328-1339. [48] LI D, NI H W, JIAO S, et al. Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies[J]. Microbiome, 2021, 9(1): 20. [49] ZHANG S J, ZENG Y H, ZHU J M, et al. The structure and assembly mechanisms of plastisphere microbial community in natural marine environment[J]. Journal of Hazardous Materials, 2022, 421: 126780. [50] BAKER B J, DE A V, SETTZ K W, et al. Diversity, ecology and evolution of Archaea[J]. Nature Microbiology, 2020, 5(7): 887-900. [51] 刘文静, 张建伟, 邱崇文, 等. 水旱轮作对土壤微生物群落构建过程的影响机制[J]. 土壤, 2020, 52(4): 710-717. [52] ZHANG T, XU S, YAN R M, et al. Similar geographic patterns but distinct assembly processes of abundant and rare bacterioplankton communities in river networks of the Taihu Basin[J]. Water Research, 2022, 211: 118057. [53] ZHANG Q, WANG X, ZHANG Z, et al. Linking soil bacterial community assembly with the composition of organic carbon during forest succession[J]. Soil Biology and Biochemistry, 2022, 173: 108790.
点击查看大图
计量
- 文章访问数: 22
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0