COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN
-
摘要: 采用SBM模型对2022年黄河流域上中游城市72座污水处理厂运行进行减污降碳协同增效综合绩效评估,减污降碳增效指标体系主要包括污染物去除类指标、经济投入指标和碳排放相关指标。采用Kruskal-Wallis方法对可能影响污水处理厂运行综合绩效的因素进行检验。结果表明:有18座污水处理厂运行综合绩效较好,其余54座污水处理厂运行综合绩效相对较低,其中纯技术效率值低是造成污水处理厂运行综合绩效值偏低的主要原因。综合绩效值为1的污水处理厂在降碳方面还有提升空间,综合绩效值<1的污水厂在投入产出指标中还存在不同程度的冗余;污染物运行负荷、排水标准、污水处理工艺、污泥处理处置方式是影响污水处理厂运行综合绩效的主要原因。Abstract: The study applied the SBM model to conduct a comprehensive performance evaluation of the synergy between pollution reduction and carbon emission reduction for the operation of 72 wastewater treatment plants in the upper and middle reaches of the Yellow River Basin in 2022. The performance evaluation indicators include pollutant removal metrics, economic input metrics, and carbon emission-related metrics. The Kruskal-Wallis method was used to examine the factors that may affect the overall operational performance of the wastewater treatment plants. The results showed that 18 wastewater treatment plants performed well in terms of overall operational efficiency, while the remaining 54 plants exhibited relatively lower performance. Low values of pure technical efficiency were identified as the main cause of the insufficient performance in some plants. Plants with a comprehensive performance score equal to 1 still had room for improvement in carbon emission reduction, while those with a score below 1 displayed varying degrees of redundancy in input-output indicators. The key factors affecting overall operational performance include pollutant load, discharge standards, wastewater treatment processes, and sludge treatment and disposal methods.
-
[1] European Statistical Office. European statistics report[R]. Luxembourg: Euro-Stat,2014. [2] LU L, GUEST J S, PETERS C A, et al. Wastewater treatment for carbon capture and utilization[J].Nature Sustainability,2018,1(12):750-758. [3] JIANG H, HUA M, ZHOU H, et al. Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking[J]. Journal of Cleaner Production, 2020, 244: 118729. [4] 国家发展改革委,住房城乡建设部,生态环境部.关于推进污水处理减污降碳协同增效的实施意见[A/OL].(2023-12-12)[2024-08-15].https://www.gov.cn/zhengce/zhengceku/202312/content_6923468.htm. [5] 徐傲,巫寅虎,陈卓,等.黄河流域城镇污水处理厂建设与运行现状分析[J].给水排水,2022,58(12):27-36. [6] 彭定华,张辉,马雪菲,等.基于减污降碳和水质目标约束下的黄河干流兰州段城区污水处理厂出水排放限值研究[J].环境科学研究,2024,37(1):202-211. [7] 石肖扬.西安市污水处理厂减排效果及影响因素分析[D].西安:长安大学,2022. [8] TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509. [9] 谢进忠. 基于SBM-DEA的污水处理厂环境绩效研究[D].西安:长安大学,2022. [10] 郭盛杰,董欣,曾思育.基于数据包络分析的中国城镇污水处理厂综合效能评估[J].给水排水,2021,57(10):33-38. [11] 曹月莹. 基于DEA模型的污水处理厂运行效率有效性评价:以浙江省为例[D]. 北京:北京化工大学, 2022. [12] 杨莉,李洁,张珊,等.SBM-DEA模型对污水处理厂环境绩效评价的有效性分析[J].安全与环境学报,2023, 23(7):2487-2496. [13] 王朔,陆云平,刘树洋,等.苏州市污水处理厂碳排放研究[J].环境工程,2023,41(10):173-184. [14] 买亚宗,肖婉婷,石磊,等.我国城镇污水处理厂运行效率评价[J].环境科学研究,2015,28(11):1789-1796. [15] 中华人民共和国生态环境部. 全国城镇污水处理管理信息平台[DB/OL].(2022).https://wushui.mohurd.gov.cn:8088/login.jsp. [16] 谭雪,石磊,马中,等.基于污水处理厂运营成本的污水处理费制度分析:基于全国227个污水处理厂样本估算[J].中国环境科学,2015,35(12):3833-3840. [17] 中国环境保护产业协会. 污水处理厂低碳运行评价技术规范:T/CAEPI 49-2022[S].2022. [18] ZHOU P, ANG B W, POH K L. A survey of data envelopment analysis in energy and environmental studies[J]. European Journal of Operational Research. 2008, 189(1): 1-18. [19] 吴琼芳,成官文,唐忠德,等.基于DEA模型的贵州省市级污水处理厂运行有效性评价[J].桂林理工大学学报,2014,34(2):366-370. [20] 蒋慧. 城市污水处理厂绩效评估[D].上海:上海交通大学,2022. [21] 朱黔沫, 陈浩,叶建锋. 城市排水系统的碳排放特征与减排策略综述[J]. 净水技术, 2024,43(3):47-60. [22] 张小洪,蒋文举. 污泥处置方式对污水处理系统可持续性的影响[J]. 生态环境,2008,17(1):93-98.
点击查看大图
计量
- 文章访问数: 22
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0