PERFORMANCE OF SUBMERGED PLANTS COUPLED WITH BENTHIC ANIMALS IN REMOVING POLLUTANTS FROM WATER BODY SEDIMENTS
-
摘要: 底泥是水体生态系统的重要组成部分,污染物在底泥与上覆水体之间反复迁移使其成为水环境治理的症结所在,实现底泥污染物高效去除是保证水体功能的重要手段。文章构建了沉水植物耦合底栖动物系统以净化底泥污染物,试验结果表明:投加50%底泥覆盖率的苦草耦合2 kg/m2的河蚌对污染底泥中的污染物去除效果最好,对底泥中有机质、NO-2-N、NO-3-N、NH+4-N和TP去除率分别达到12.2%、25.3%、29.1%、54.4%和16.20%。20 ℃条件下,5%底泥干重的生物炭使苦草河蚌组合对底泥有机质、TN、NO-2-N、NO-3-N、NH+4-N和TP去除率分别达到29.4%、29.8%、86.5%、67.1%、70.2%和28.2%;当水体增设曝气,且曝气量为6 L/min时,苦草河蚌组合对底泥有机质、TN、NO-2-N、NO-3-N、NH+4-N和TP去除率分别达到 23.5%、39.1%、92.1%、77.7%、71.8%和17.3%。研究结果将为沉水植物耦合底栖动物高效削减底泥污染物提供一定的理论依据和数据支撑。Abstract: Sediment is a vital component of river and lake aquatic ecosystems, the repeated migration of pollutants between the sediment and overlying water bodies has become the crux of water environment management. This experiment studied the coupling of submerged plants and benthic animals to purify sediment to reduce the impact of sediment pollutants on water bodies. The research showed that the highest performance in removal of pollutants from sediment was achieved when combining 50% sediment coverage of Vallisneria natans with 2 kg/m2 of freshwater mussels. The removal rates were 12.2% for organic matter, 25.3% for NO-2-N, 29.1% for NO-3-N, 54.4% for NH+4-N, and 16.20% for TP. The removal rates of organic matter, TN, NO-2-N, NO-3-N, NH+4-N and TP were 29.4%, 29.8%, 86.5%, 67.1%, 70.2%, 28.2% respectively, when adding biochar with 5% dry weight of sediment to the sediment, under 20 ℃. When aeration was conducted and the aeration rate was 6 L/min, the removal rates of organic matter, TN, NO-2-N, NO-3-N, NH+4-N and TP in the sediment of the combination reached 23.5%, 39.1%, 92.1%, 77.7%, 71.8% and 17.3%, respectively.
-
Key words:
- water sediment /
- contaminants reduction /
- submerged plants /
- benthic animals /
- overlying water
-
[1] ZHANG H, GU J, LIN Z. Nutrients and phosphorus release in sediment in a tropical pumped water storage reservoir[J]. Tropical and Sub-Tropical Reservoir Limnology in China: Theory and Practice, 2012: 325-341. [2] 李钢,韩明爽,徐海红.水体疏浚底泥利用现状与能源化利用[J].环境工程, 2021, 39(6):55-58, 71. [3] HAKSTEGE A L. Description of the available technology for treatment and disposal of dredged material[J]. Sustainable Management of Sediment Resources, 2007, 2(7):68-118. [4] SUN X, GHOSH U. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments[J]. Environmental Toxicology & Chemistry, 2010, 27(11):2287-2295. [5] TOMASZEWSKI J E, WERNER D, LUTHY R G. Activated carbon amendment as a treatment for residual DDT in sediment from a superfund site in San Francisco Bay, Richmond, California, USA[J]. Environmental Toxicology & Chemistry, 2007, 26(10):2143-2150. [6] BOKUNIEWICZ H J. Analytical descriptions of subaqueous groundwater seepage[J]. Estuaries and Coasts, 1992, 15(4):458-464. [7] 陈志超, 张志勇, 刘海琴, 等. 4种水生植物除磷效果及系统磷迁移规律研究[J]. 南京农业大学学报, 2015, 38(1):107-112. [8] 孔祥龙, 叶春, 李春华, 等. 苦草对水-底泥-沉水植物系统中氮素迁移转化的影响[J]. 中国环境科学, 2015(2):539-549. [9] 陈璐. 生物炭与刺苦草联合修复湖泊水体铜污染研究[D]. 南昌: 南昌工程学院, 2018. [10] 谢再兴, 李威, 涂洁, 等. 底泥添加生物炭对苦草生长及水质的影响[J]. 南昌工程学院学报, 2019(1):74-79. [11] DUMBAULD B R, RUESINK J L, RUMRILL S S. The ecological role of bivalve shellfish aquaculture in the estuarine environment: a review with application to oyster and clam culture in West Coast (USA) estuaries[J]. Aquaculture, 2009, 290(3/4):196-223. [12] 沈洪艳, 曹志会, 张红燕, 等. 淡水沉积物中Cd和Cu对河蚬的毒性效应研究[J]. 中国环境科学, 2016(1):286-292. [13] 余光伟, 雷恒毅, 刘广立, 等,重污染感潮河道底泥释放特征及其控制技术研究[J]. 环境科学学报, 2007, 27(9):1476-1484. [14] 康妍. 典型底栖动物人工湿地系统强化污染物去除机制研究[D]. 济南: 山东大学,2019. [15] 田胜艳, 张彤, 宋春诤, 等. 生物扰动对海洋沉积物中有机污染物环境行为的影响[J]. 天津科技大学学报, 2016, 31(1):1-7. [16] TANG X Q, WU M, LI R. Distribution, sedimentation, and bioavailability of particulate phosphorus in the mainstream of the Three Gorges Reservoir[J]. Water Research, 2018, 140(sep.1):44-55. [17] FENG L K, LIU Y, ZHANG J Y, et al. Dynamic variation in nitrogen removal of constructed wetlands modified by biochar for treating secondary livestock effluent under varying oxygen supplying conditions[J]. Journal of Environmental Management, 2020, 260:110152. [18] 张雅. 沉水植物对底泥修复效果研究[D]. 北京: 北京林业大学,2013. [19] LI W, ZHOU J H, DING H J, et al. Low-dose biochar added to sediment improve water quality and promote the growth of submerged macrophytes[J]. Science of the Total Environment, 2020, 742:140602. [20] DE La Rosa, J M, PANEQUE M. HILBER I, et al. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from Southern Spain[J]. SIAM Journal on Applied Dynamical Systems, 2017, 16(2):557-565. [21] GAI X P, WANG H Y, LIU J, et al. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate[J]. PLoS One, 2014, 9(12):e113888. [22] JIN J W, WANG M Y, CAO Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228:218-226. [23] STEINER C, DAS K C, MELEAR N, et al. Reducing nitrogen loss during poultry litter composting using biochar[J]. Journal of Environmental Quality, 2010, 39(4):1236-1242. [24] CANTRELL K B, HUNT P G, UCHIMIVA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107(none):419-428. [25] 方坤. 生物炭对沉水植物系统构建及除污效能影响研究[D]. 北京: 北京林业大学, 2020.
点击查看大图
计量
- 文章访问数: 14
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0