中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进水C/N对A2/O低氧短程硝化反硝化除磷脱氮性能的影响

卢宝光 薛世玉 吴传栋 孙雪莹 陈晨咏 王钟铅 温慧芳 云玉攀 苗志加

卢宝光, 薛世玉, 吴传栋, 孙雪莹, 陈晨咏, 王钟铅, 温慧芳, 云玉攀, 苗志加. 进水C/N对A2/O低氧短程硝化反硝化除磷脱氮性能的影响[J]. 环境工程, 2024, 42(12): 89-96. doi: 10.13205/j.hjgc.202412012
引用本文: 卢宝光, 薛世玉, 吴传栋, 孙雪莹, 陈晨咏, 王钟铅, 温慧芳, 云玉攀, 苗志加. 进水C/N对A2/O低氧短程硝化反硝化除磷脱氮性能的影响[J]. 环境工程, 2024, 42(12): 89-96. doi: 10.13205/j.hjgc.202412012
LU Baoguang, XUE Shiyu, WU Chuandong, SUN Xueying, CHEN Chenyong, WANG Zhongqian, WEN Huifang, YUN Yupan, MIAO Zhijia. EFFECT OF INFLUENT C/N RATIO ON PHOSPHORUS AND NITROGEN REMOVAL BY PARTIAL NITRIFICATION-DENITRIFICATION IN A2/O PROCESS WITH LOW DISSOLVED OXYGEN CONCENTRATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 89-96. doi: 10.13205/j.hjgc.202412012
Citation: LU Baoguang, XUE Shiyu, WU Chuandong, SUN Xueying, CHEN Chenyong, WANG Zhongqian, WEN Huifang, YUN Yupan, MIAO Zhijia. EFFECT OF INFLUENT C/N RATIO ON PHOSPHORUS AND NITROGEN REMOVAL BY PARTIAL NITRIFICATION-DENITRIFICATION IN A2/O PROCESS WITH LOW DISSOLVED OXYGEN CONCENTRATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 89-96. doi: 10.13205/j.hjgc.202412012

进水C/N对A2/O低氧短程硝化反硝化除磷脱氮性能的影响

doi: 10.13205/j.hjgc.202412012
基金项目: 

国家自然基金联合基金(U21A2023)

大学生创新创业计划资助项目

河北省自然科学基金面上基金(C2021403002)

河北地质大学教学改革与实践项目(2022J22)

河北地质大学博士科研启动基金资助项目(BQ2024027)

河北省研究生创新能力培养项目(CXZZSS2023132)

河北省高校生态环境地质应用技术研发中心开放基金资助项目(JSYF-202401)

详细信息
    作者简介:

    卢宝光(1971-),男,高级工程师,主要研究方向为污水处理及资源化利用。lubaoguang@gdhwater.com

    通讯作者:

    苗志加(1984-),男,教授,主要研究方向为污水处理及资源化利用。zhijia_miao@163.com

EFFECT OF INFLUENT C/N RATIO ON PHOSPHORUS AND NITROGEN REMOVAL BY PARTIAL NITRIFICATION-DENITRIFICATION IN A2/O PROCESS WITH LOW DISSOLVED OXYGEN CONCENTRATION

  • 摘要: 研究重点考察了低氧条件下(0.5 mg/L),A2/O处理不同C/N污水(2.5~7.0)的短程硝化反硝化除磷脱氮性能。实验结果表明,进水中80%的COD在厌氧区被去除,主要用于合成PHA。当进水C/N<4.5,出水COD会随进水出现较大波动。水体中TN去除主要通过短程硝化、内源反硝化、反硝化除磷等过程来实现。当进水C/N为2.5、3.5,TN去除率均维持在80%左右;当进水C/N为4.5、5.0时,亚硝酸盐有明显积累,平均积累率分别为24.4%、31.9%,出水TN可以稳定达到10 mg/L以下,去除率最高可达到85.3%。因此,适当提高进水C/N能有效提高TN去除效果。水体中磷主要通过反硝化除磷过程被去除。当进水C/N为2.5时,系统磷平均去除率为65%左右,除磷效果较差。当C/N提高至3.5,系统除磷效果达到最佳,出水PO3-4-P平均浓度为0.3 mg/L,去除率达到92.1%,缺氧吸磷占比为74.6%。另外,当进水C/N为5.0~7.0时,系统内反硝化除磷、内源反硝化、短程硝化、好氧吸磷过程能够有效耦合运行,实现有机物、磷、氮的同步高效去除,COD、TN、PO3-4-P 去除率可分别最高达84%、85%和85%以上。经16S rDNA高通量测序分析,系统中起脱氮除磷作用的微生物主要为聚糖菌——Candidatus Competibacter,反硝化细菌——Azospira,硝化细菌——Nitrospira、Nitrosomonas及反硝化聚磷菌——Hyphomicrobium、Candidatus Accumulibacter等。
  • [1] 华云洁,胡金财,施昱,等.Orbal 氧化沟工艺改造对脱氮效果的影响分析[J].环境工程,2023,41(增刊2):71-78.
    [2] 岳志芳,李正,王彦隽.内蒙古某城镇污水处理厂提标改造工程实例[J].水处理技术,2024,50(4):144-147.
    [3] 李志平,郭玉梅,邢美容,等. 昆明某污水处理厂Carrousel氧化沟硝化作用分析及升级改造[J].水处理技术,2014,40(10):123-127.
    [4] 贾莉.池州市城东污水厂A2/O氧化沟工艺的运行分析[J].中国给水排水,2014,30(9):121-124.
    [5] 崔涛,李胜,田敏,等.氧化沟型A2O工艺脱氮除磷性能评价[J].中国给水排水,2023,39(22):75-79.
    [6] 乔海兵,赵志太,李帅军,等.污水厂氧化沟改造为A2O+MBBR+O3工艺提标设计[J].中国给水排水,2022,38(7):60-65.
    [7] MANSE R R,GUJER W, SIEG R H,et al.Consequences of mass transfer effects on the kinetics of nitrifiers[J].Water Research,2005,39 (19): 4633-4642.
    [8] 张杰,杨杰,李冬. AOA后置短时低氧曝气实现短程硝化反硝化除磷[J]. 哈尔滨工业大学学报, 2023,56(6):1-7.
    [9] 甄建园,于德爽,王晓霞,等. 低C/N(<3)条件下SNEDPR系统启动及其脱氮除磷特性研究[J]. 中国环境科学,2018, 38(8): 2960-2967.
    [10] BAI X Y, MICHELLE M, MCKNIGHT B, et al. Nitrogen removal pathways during simultaneous nitrification, denitrification, and phosphorus removal under low temperature and dissolved oxygen conditions[J]. Bioresource Technology, 2022,354: 127177.
    [11] 李炳荣,曹特特,王林,等. 低氧条件下 A2/O 工艺对城市污水脱氮处理的中试研究[J].中国环境科学,2019,39(1):134-140.
    [12] 任丽芳,李晓庆,孙洪伟. 不同温度 An/A/O-SBR反硝化除磷及N2O释放特性[J].环境工程,2023,41(12):107-115.
    [13] 吕利平,李航,庞飞,等. 交替好氧/缺氧短程硝化反硝化工艺处理低 C/N 城市污水[J].环境工程学报,2020,14(6):1529-1536.
    [14] 国家环境保护局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社,2002: 252-354.
    [15] 张淼, 彭永臻, 张建华, 等.进水 C/N 对 A2/O-BCO 工艺反硝化除磷特性的影响[J]. 中国环境科学, 2016,36(5):1366-1375.
    [16] PENG Y, GE S. Enhanced nutrient removal in three types of step feeding process from municipal wastewater[J]. Bioresource Technology, 2011, 102(11):6405-6413.
    [17] ZHANG M, PENG Y Z, WANG C, et al. Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process[J].Biochemical Engineering Journal, 2016,106:26-36.
    [18] KUBA T, SMOLDERS G, LOOSDRECHT M C M, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science and Technology, 1993, 27(5/6):241-252.
    [19] REN S Q, LIU Y R, HE Y Y, et al. Mathematical modeling of the dynamic effect of denitrifying glycogen-accumulating organisms on nitrous oxide production during denitrifying phosphorus removal[J] Chemical Engineering Journal, 2023,453:1-12.
    [20] CHUNG T S, ZHANG S, WANG K Y, et al. Forward osmosis processes: yesterday, today and tomorrow[J]. Desalination,2012,287(2):78-81.
    [21] HANAKI K, WANTAWIN C, OHGAKI S. Nitrification at low-levels of dissolved-oxygen with and without organic loading in a suspended-growth reactor[J]. Water Research, 1990, 24(3):297-302.
    [22] CAMEJO P Y, OWEN B R, Martirano J, et al. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors[J]. Water Research, 2016, 102:125-137.
    [23] SKENNERTON C T, BARR J J, SLATER F R, et al. Expanding our view of genomic diversity in Candidatus Accumulibacter clades: metabolic plasticity in Accumulibacter clades[J]. Environmental Microbiology, 2015, 17(5):1574-1585.
    [24] LEE D S, JEON C O, PARK J M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Water Research, 2001, 35(16):3968-3976.
    [25] RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219:106-113.
    [26] LI C, ZHANG J, LIANG S, et al. Nitrous oxide generation in denitrifying phosphorus removal process: main causes and control measures[J]. Environmental Science and Pollution Research, 2013, 20(8):5353-5360.
    [27] MIAO Z J, LI D, GUO S, et al. Effect of Free nitrous acid on nitrous oxide production and denitrifying phosphorus removal by polyphosphorus-accumulating organisms in wastewater treatment[J]. BioMed Research International, 2018, 26:9192607.
    [28] WINKLER M, BASSIN J P, KLEEREBEZEM R, et al. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures[J]. Water Research, 2011, 45(11):3291-3299.
    [29] ZENG W, BAI X L, ZHANG L M, et al. Population dynamics of nitrifying bacteria for nitritation achieved in Johannesburg (JHB) process treating municipal wastewater[J]. Bioresource Technology, 2014, 162:30-37.
    [30] GU X, LENG J T, ZHU J T, et al. Influence mechanism of C/N ratio on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2022, 343:126116.
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 网络出版日期:  2025-01-18

目录

    /

    返回文章
    返回