AN EXPERIMENTAL STUDY ON HIGH EFFICIENCY INTERCEPTION AND PURIFICATION FOR URBAN RAINWATER
-
摘要: 针对受污染雨水直排水体造成水环境污染,构建了可无人值守的以物化处理为主的一体化雨水集蓄净化装置。通过雨水集蓄、混凝剂投加、曝气搅拌和静置沉淀等操作,装置对受污雨水进行了强化混凝沉淀处理。结果表明:3种不同浓度受污雨水,分别投加聚合氯化铝150,200,250 mg/L,水力停留时间4.5 h时,SS、COD和TP去除率均分别高于95%、75%和72%,出水SS、COD和TP达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级B标准。同时,对总锌和总铅去除率均在82%以上,对总铝去除率在73%以上,且出水总锌和总铅远低于GB 18918—2002最高允许排放浓度。此外,曝气搅拌时雨水ρ(DO)峰值为9.04 mg/L,处理后出水ρ(DO)为3.75 mg/L。装置处理成本为0.08~0.11 元/m3,实现了混合、反应和分离一体化过程协同,达到了技术上可行和经济上合理的要求。Abstract: In response to the water environment pollution caused by direct discharge of polluted rainwater into water bodies, an integrated collection and purification facility of rainwater was developed based on physical-chemical treatment in an unattended manner. The enhanced coagulation and sedimentation had been conducted onto the polluted rainwater by the facility’s operations such as rainwater collection, coagulant addition, aeration stirring and sedimentation. The study results showed that when PAC, with dosages of 150, 200, and 250 mg/L were respectively added to the polluted rainwater of three different concentrations, and the hydraulic retention time was 4.5 hours, the removal efficiencies of SS, COD and TP were more than 95%, 75% and 72%, respectively. The SS, COD and TP in effluent met the Class I-B standard of GB 18918—2002. Meanwhile, over 82% of total zinc and total lead removal rates were achieved by the facility, and the removal efficiency for total aluminum was 73% above. Moreover, the mass concentration of total zinc and total lead in the effluent of the facility was much lower than the maximum allowable emission concentration in GB 18918—2002. Additionally, the peak mass concentration of dissolved oxygen could reach 9.04 mg/L during the aeration stirring phase. The mass concentration of dissolved oxygen in discharged water was 3.75 mg/L. The treatment cost of the facility was RMB 0.08~0.11 yuan/m3 of polluted rainwater. The processes of mixing, reaction and separation were integrated through the facility, which realized the requirements of technical feasibility and economic rationality.
-
Key words:
- rainwater /
- interception /
- coagulation /
- aeration stirring /
- dissolved oxygen
-
[1] GAAFAR M, MAHMOUD S H, GAN T Y, et al. A practical GIS-based hazard assessment framework for water quality in stormwater systems[J]. Journal of Cleaner Production,2019, 245:118855. [2] 姚焕玫,卢燕南,王石.基于SWMM模型的南宁市海绵城市建设优化模拟[J].环境工程,2019,37(11):102-109, 188. [3] IQBAL H, BAIG M A. Characterization of first flush in urban highway runoffs[J]. Environmental Engineering & Management Journal,2015,14(1):45-50. [4] 钟登杰,张湖川,李林澄,等.城市初期雨水污染及处理措施综述[J].环境污染与防治,2019,41(2):224-230. [5] 朱勇强,方明明,许婷婷,等.基于城镇黑臭河道水体的组合型原位生态修复系统的构建与效果:以上海市地区某黑臭河道为例[J].环境工程,2023,41(1):240-247. [6] 杨磊三,李骏飞,李德强,等.广东某污水厂二期扩建污水和初期雨水处理工程设计[J].中国给水排水,2022,38(24):47-52. [7] 徐文征.城市污水处理厂接纳初期雨水的可行性分析[J].净水技术,2012,31(4):13-16. [8] 金竹静.滇池流域复合型河流污染成因诊断及治理技术研究与应用[D]. 上海:上海交通大学,2020. [9] WEISS G. Innovative use of lamella clarifiers for central stormwater treatment in separate sewer systems[J]. Water Science & Technology,2014,69(8):1606-1611. [10] HAKIMDAVAR R, CULLIGAN P J, FINAZZI M, et al. Scale dynamics of extensive green roofs: quantifying the effect of drainage area and rainfall characteristics on observed and modeled green roof hydrologic performance[J]. Ecological Engineering,2014,73:494-508. [11] 王宗圣. 基于土壤入渗能力下限的丘陵区下凹式绿地滞蓄雨水效能研究[D].合肥:合肥工业大学,2022. [12] 吕炎,史静娈,马晓雨,等.北方某新建城区初期雨水调蓄池设计案例分析[J].环境工程,2023,41(增刊1):257-261. [13] 时雨.一种新型雨水旋流分离器的试验研究及模拟[D].北京:清华大学,2017. [14] 周传庭,王梦玉,幸韵欣,等.城市初期雨水污染及处理措施的研究进展[J].净水技术,2022,41(7):17-26. [15] 杨墨,王彬,张锋,等.武汉南湖周边某雨水处理厂设计[J].给水排水,2021,57(8): 56-60. [16] 龙程理,李璐,陈燕波,等.BIM技术在武汉南湖初雨处理厂设计中的应用[J].中国给水排水,2021,37(18):82-87. [17] SHOLJI I, KAZI N M. Kinetics of pneumatic flocculation[J]. Water Research,1997,31(12):2979-2988. [18] WANG L, LI Y, ZHANG Q Q, et al. Fractal theory’s investigation in pneumatic flocculation process[J]. Advanced Materials Research,2012,383/384/385/386/387/388/389/390:6427-6430. [19] 杨开.自适应性初期雨水截流导流装置:CN201820803027.8[P]. 2018-12-15. [20] WEI Q S, ZHU G F, WU P, et al. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: a case of Xiamen City[J]. Journal of Environmental Sciences,2010, 22(4): 533-539. [21] CHARTERS F J, COCHRANE T A, O'SULLIVAN A D. The influence of urban surface type and characteristics on runoff water quality[J]. Science of the Total Environment,2021, 755(1): 142470. [22] 国家环境保护总局,国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准:GB18918—2002[S]. 北京:中国环境出版社,2002. [23] 骆其金,周昭阳,黎京士,等.滤坝系统对城市初期雨水的净化效果[J].环境工程技术学报,2019,9(3):282-285. [24] 郭冀峰,黄宇华,关卫省,等.混凝/平板膜光催化联合反应器工艺处理高速公路桥面雨水径流研究[J].安全与环境学报,2017,17(4):1465-1469. [25] 北京市市政工程设计研究总院有限公司. 给水排水设计手册:城镇排水(第5册)[M].北京:中国建筑工业出版社,2017. [26] 李树金,王三反,薛广雷.气动絮凝强化处理城镇污染河水[J].环境工程学报, 2012,6(5):1629-1632. [27] 史蕊町.气动絮凝研究及应用进展[J].当代化工研究,2021,84(7):150-151. [28] 贺卫宁,林潇,马晶伟,等.改良填料生物滞留池处理初期雨水性能探究[J].给水排水,2022,58(增刊1):642-649. [29] 黎京士,周秀秀,何晨晖,等.工业区雨洪强化净化与调蓄水水质保持技术中试研究[J].中国给水排水,2018,34(17):25-28, 34. [30] DIETZ M E, CLAUSEN J C. A field evaluation of rain garden flow and pollutant treatment[J]. Water Air & Soil Pollution, 2005, 167(1):123-138. [31] HAUDUC H, TAKACS I, SMITH S, et al. A dynamic physicochemical model for chemical phosphorus removal[J]. Water Research, 2015, 73:157-170. [32] 刘扬. 内循环曝气膜生物反应器污泥特性及微生物群落研究[D]. 武汉:华中科技大学,2022. [33] 骆辉,章泽宇,胡小波,等.道路雨水径流中重金属特征研究进展[J].应用化工, 2019, 48(10):2456-2461. [34] 田文龙, 刘瑶环.下凹式绿地处理城市初期雨水效能的试验研究[J].市政技术, 2013, 31(5):123-126.
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0