DEVELOPMENT AND BARRIER PERFORMANCE OF A POLYVINYLPYRROLIDONE/ HYDROXYPROPYL METHYLCELLULOSE/NANOCELLULOSE TERNARY ODOR GAS BARRIER SPRAY FILM
-
摘要: 垃圾填埋处理的过程会产生恶臭气体,特点是产生量大、持续时间长、影响范围广等,其中硫化氢(H2S)和氨气(NH3)是生活垃圾填埋场散发的典型恶臭气体。为了处理恶臭气体,使用以聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)、羟丙基甲基纤维素(hydroxypropyl methylcellulose, HPMC)、纤维素纳米纤维(cellulose nanofiber, CNF)、纤维素纳米晶(cellulose nanocrystal, CNC)为膜基材的聚合物共混物(polymer blend)制备除臭复合膜,PVP的羰基与HPMC的游离羟基之间存有较强分子间氢键,在整个组成范围内形成可混溶的共混物,相容性良好。该高分子混合溶液喷洒后成膜,利用模拟升流式反应器隔绝H2S和NH3,单因素实验及响应面分析得到最佳复合膜液配比为4.20% PVP、1.20% HPMC、0.40% CNF、0.06% CNC;并添加增塑剂1.5%丙三醇、表面活性剂1.0% 吐温80、防蝇除臭剂3.0% 柠檬烯、香料0.5%茶树精油优化复合膜性能,该复合膜对H2S和NH3的截留率在30 min时均可保证在95%以上。Abstract: Gases with bad odor are produced during the landfill treatment process, and with a large production, long lifetime, and broad impact range. Among them, hydrogen sulfide and ammonia are the typical pungent gases released by landfills for municipal solid waste. To deal with odorous gases, this article used a polymer blend based on polyvinylpyrrolidone (PVP), hydroxypropyl methylcellulose (HPMC), cellulose nanofiber (CNF), and cellulose nanocrystal (CNC) as the membrane substrates. There is a strong intermolecular hydrogen bond between the carbonyl group of polyvinylpyrrolidone and the free hydroxyl group of hydroxypropyl methylcellulose, forming a miscible blend throughout the entire composition range with good compatibility. The polymer mixed solution was sprayed into a film, and a simulated upflow reactor was used to isolate hydrogen sulfide and ammonia gas. Single-factor experiments were conducted, response surface analysis was designed, and the optimal composite membrane liquid ratio was obtained as follows: 4.20% PVP, 1.20% HPMC, 0.40% CNF, and 0.06% CNC. A plasticizer of 1.5% glycerol, a surfactant of 1.0% Tween 80, a fly repellent and deodorant of 3.0% limonene, and a fragrance of 0.5% tea tree essential oil were added to optimize the comprehensive performance of the composite membrane. The retention rate of H2S and NH3 in the composite membrane can be guaranteed to be 95% above in 30 minutes.
-
[1] CAI B, WANG J, LONG Y, et al. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach[J]. Journal of Environmental Management, 2015, 164: 206-214. [2] 赵岩, 陆文静, 王洪涛, 等. 城市固体废物处理处置设施恶臭污染评估指标体系研究[J]. 中国环境科学, 2014, 34(7): 1804-1810. [3] 纪华. 垃圾填埋场恶臭气体产气机制及其动态变化研究[D]. 北京:中国农业大学, 2004. [4] CHIRIAC R, de ARAUJOS M J, CARRE J, et al. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: comparison with biogases from municipal waste landfill site[J]. Waste Management, 2011, 31(11): 2294-2301. [5] LOU Z Y, WANG M C, ZHAO Y C, et al. The contribution of biowaste disposal to odor emission from landfills[J]. Journal of the Air & Waste Management Association, 2015, 65(4): 479-484. [6] 史炜, 王军民, 曹江林. 垃圾填埋场臭气理论研究进展[J]. 山东化工, 2018, 47(19): 189, 195. [7] CERDA A, ARTOLA A, FONT X, et al. Composting of food wastes: status and challenges[J]. Bioresource Technology, 2018, 248: 57-67. [8] KASHFI K, OLSON K R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras[J]. Biochemical Pharmacology, 2013, 85(5): 689-703. [9] NYAMWEYA N, HOAG S W. Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry[J]. Pharmaceutical Research, 2000, 17(5): 625-631. [10] KARAVAS E, GEORGARAKIS E, BIKIARIS D. Adjusting drug release by using miscible polymer blends as effective drug carriers[J]. Journal of Thermal Analysis and Calorimetry, 2006, 84(1): 125-133. [11] MORKHADE D M. Comparative impact of different binder addition methods, binders and diluents on resulting granule and tablet attributes via high shear wet granulation[J]. Powder Technology, 2017, 320: 114-124. [12] HIREMATH A C, SHERIGARA B S, PRASHANTHA K, et al. Studies on the miscibility of hydroxy propyl methyl cellulose and poly(vinyl pyrollidone) blends[J]. Indian Journal Chemical Technology, 2002, 9(4): 312-315. [13] DONG B X, LIM L, HADINOTO K. Enhancing the physical stability and supersaturation generation of amorphous drug-polyelectrolyte nanoparticle complex via incorporation of crystallization inhibitor at the nanoparticle formation step: a case of HPMC versus PVP[J]. European Journal of Pharmaceutical Sciences, 2019, 138:105035. [14] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. [15] 郭学彬, 赵珊, 常江, 等. 膜接触—吸收法去除市政污水厂恶臭气体研究[J]. 环境科学与管理, 2023, 48(6): 94-99. [16] LU H T, KANEHASHI S, SCHOLES C A, et al. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening[J]. Journal of Membrane Science, 2017, 539: 432-440. [17] 郭婕, 刘静, 邓子龙, 等. 靶向去除恶臭气体硫化氢和氨气的喷膜制备及性能研究[J]. 山东化工, 2021, 50(6): 26-29. [18] KOCZKUR K M, MOURDIKOUDIS S, POLAVARAPU L, et al. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis[J]. Dalton Transactions, 2015, 44(41): 17883-17905. [19] GRAF C, DEMBSKI S, HOFMANN A, et al. A general method for the controlled embedding of nanoparticles in silica colloids[J]. Langmuir, 2006, 22(13): 5604-5610. [20] WU X K, ZHAO Y R, YANG C Q, et al. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries[J]. Journal of Materials Science, 2015, 50(12): 4250-4257. [21] XU M L, LI D D, SUN K, et al. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(30): 16372-16376. [22] CHANG C Y, ZHANG L N. Cellulose-based hydrogels: present status and application prospects[J]. Carbohydrate Polymers, 2011, 84(1): 40-53. [23] 刘啸武. 羟丙基甲基纤维素生产技术和发展前景[J]. 江汉石油职工大学学报, 2004(6): 58-60. [24] PRAKASH Y, SOMASHEKARAPPA H, PARAMESWARA P, et al. Characterization of HPMC/PVP polymer blend films using WAXS technique[C]//Solid State Physics, PTS 1 and 2, 2012: 565. [25] 李伟, 王锐, 刘守新. 纳米纤维素的制备[J]. 化学进展, 2010, 22(10): 2060-2070. [26] XUE Y, MOU Z H, XIAO H N. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications[J]. Nanoscale, 2017, 9(39): 14758-14781. [27] 卿彦, 蔡智勇, 吴义强, 等. 纤维素纳米纤丝研究进展[J]. 林业科学, 2012, 48(7): 145-152. [28] YIN R, YANG S Y, LI Q M,et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications[J]. Science Bulletin, 2020, 65(11): 899-908. [29] 赵冬梅, 初小宇, 魏丽娜, 等. 纳米纤维素在食品包装材料中的应用研究进展[J]. 高分子通报, 2021(11): 11-20. [30] 陈秋宏. 纤维素纳米晶稳定高内相乳液及应用[D]. 广州:华南理工大学, 2018. [31] 李亚瑜. 纤维素纳米晶/水性聚氨酯薄膜的构建、性能及机理研究[D]. 北京:北京林业大学, 2020. [32] 吴开丽, 韩陈晓, 于娟娟. 纤维素纳米晶的制备及应用研究进展[J]. 造纸科学与技术, 2020, 39(4): 9-13. [33] 张思航, 付润芳, 董立琴, 等 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸, 2017, 36(1): 67-74. [34] 李勍, 陈文帅, 于海鹏, 等. 纤维素纳米纤维增强聚合物复合材料研究进展[J]. 林业科学, 2013, 49(8): 126-131. [35] CHOI H Y, BAE J H, HASEGAWA Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water[J]. Carbohydrate Polymers, 2020, 234:115881. [36] GUAN Q F, YANG H B, HAN Z M, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient[J]. Science Advances, 2020, 6(18):eaaz1114. [37] WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020, 389: 124449. [38] EYLEY S, Thielemans W. Surface modification of cellulose nanocrystals[J]. NANOSCALE, 2014, 6(14): 7764-7779. [39] KARGARZADEH H, MARIANO M, GOPAKUMAR D, et al. Advances in cellulose nanomaterials[J]. Cellulose, 2018, 25(4): 2151-2189. [40] MOHAMMED N, LIAN H, ISLAM M S, et al. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals[J]. Chemical Engineering Journal, 2021, 417: 129237. [41] YANG X, CRANSTON E D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties[J]. Chemistry of Materials, 2014, 26(20): 6016-6025. [42] 田凤蓉, 张彬彬, 杨志林, 等. 酸性洗涤塔-生物滤塔-生物曝气池组合工艺处理恶臭气体NH3和H2S[J]. 环境工程学报, 2014, 8(9): 3905-3911. [43] MOREIRA R, CHENLO F, TORRES M D, et al. Drying kinetics of biofilms obtained from chestnut starch and carrageenan with and without glycerol[J]. Drying Technology, 2011, 29(9): 1058-1065. [44] LECETA I, GUERRERO P, DE LA CABA K. Functional properties of chitosan-based films[J]. Carbohydrate Polymers, 2013, 93(1): 339-346. [45] SUYATMA N E, TIGHZERT L, COPINET A, et al. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films[J]. Journal of Agricultural and Food Chemistry, 2005, 53(10): 3950-3957. [46] OSÉS J, FERNÁNDEZ-PAN I, MENDOZA M, et al. Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity[J]. Food Hydrocolloids, 2009, 23(1): 125-131. [47] 吴毅, 金少鸿. 药用辅料吐温80的药理、药动学及分析方法研究进展[J]. 中国药事, 2008(8): 717-720. [48] 王伟江. 天然活性单萜——柠檬烯的研究进展[J]. 中国食品添加剂, 2005(1): 33-37. [49] CIRIMINNA R, LOMELI-RODRIGUEZ M, CARA P D, et al. Limonene: a versatile chemical of the bioeconomy[J]. Chemical Communications, 2014, 50(97): 15288-15296.
点击查看大图
计量
- 文章访问数: 8
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0