中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯吡咯烷酮/羟丙基甲基纤维素/纳米纤维素三元恶臭气体阻隔喷膜研发及阻隔性能研究

付佳慧 郭婕 刘爱荣 周涛 赵由才

付佳慧, 郭婕, 刘爱荣, 周涛, 赵由才. 聚乙烯吡咯烷酮/羟丙基甲基纤维素/纳米纤维素三元恶臭气体阻隔喷膜研发及阻隔性能研究[J]. 环境工程, 2024, 42(12): 116-125. doi: 10.13205/j.hjgc.202412015
引用本文: 付佳慧, 郭婕, 刘爱荣, 周涛, 赵由才. 聚乙烯吡咯烷酮/羟丙基甲基纤维素/纳米纤维素三元恶臭气体阻隔喷膜研发及阻隔性能研究[J]. 环境工程, 2024, 42(12): 116-125. doi: 10.13205/j.hjgc.202412015
FU Jiahui, GUO Jie, LIU Airong, ZHOU Tao, ZHAO Youcai. DEVELOPMENT AND BARRIER PERFORMANCE OF A POLYVINYLPYRROLIDONE/ HYDROXYPROPYL METHYLCELLULOSE/NANOCELLULOSE TERNARY ODOR GAS BARRIER SPRAY FILM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 116-125. doi: 10.13205/j.hjgc.202412015
Citation: FU Jiahui, GUO Jie, LIU Airong, ZHOU Tao, ZHAO Youcai. DEVELOPMENT AND BARRIER PERFORMANCE OF A POLYVINYLPYRROLIDONE/ HYDROXYPROPYL METHYLCELLULOSE/NANOCELLULOSE TERNARY ODOR GAS BARRIER SPRAY FILM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 116-125. doi: 10.13205/j.hjgc.202412015

聚乙烯吡咯烷酮/羟丙基甲基纤维素/纳米纤维素三元恶臭气体阻隔喷膜研发及阻隔性能研究

doi: 10.13205/j.hjgc.202412015
基金项目: 

国家重点研发计划项目(2018YFC1901402)

详细信息
    作者简介:

    付佳慧(1999-),女,博士研究生,主要研究方向为环境纳米材料。2310154@tongji.edu.cn;郭婕(1996-),女,硕士研究生,主要研究方向为垃圾填埋场除臭复合膜。

    通讯作者:

    刘爱荣,女,副教授、博士生导师,主要研究方向为铁环境化学理论及应用。liuairong@tongji.edu.cn

DEVELOPMENT AND BARRIER PERFORMANCE OF A POLYVINYLPYRROLIDONE/ HYDROXYPROPYL METHYLCELLULOSE/NANOCELLULOSE TERNARY ODOR GAS BARRIER SPRAY FILM

  • 摘要: 垃圾填埋处理的过程会产生恶臭气体,特点是产生量大、持续时间长、影响范围广等,其中硫化氢(H2S)和氨气(NH3)是生活垃圾填埋场散发的典型恶臭气体。为了处理恶臭气体,使用以聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)、羟丙基甲基纤维素(hydroxypropyl methylcellulose, HPMC)、纤维素纳米纤维(cellulose nanofiber, CNF)、纤维素纳米晶(cellulose nanocrystal, CNC)为膜基材的聚合物共混物(polymer blend)制备除臭复合膜,PVP的羰基与HPMC的游离羟基之间存有较强分子间氢键,在整个组成范围内形成可混溶的共混物,相容性良好。该高分子混合溶液喷洒后成膜,利用模拟升流式反应器隔绝H2S和NH3,单因素实验及响应面分析得到最佳复合膜液配比为4.20% PVP、1.20% HPMC、0.40% CNF、0.06% CNC;并添加增塑剂1.5%丙三醇、表面活性剂1.0% 吐温80、防蝇除臭剂3.0% 柠檬烯、香料0.5%茶树精油优化复合膜性能,该复合膜对H2S和NH3的截留率在30 min时均可保证在95%以上。
  • [1] CAI B, WANG J, LONG Y, et al. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach[J]. Journal of Environmental Management, 2015, 164: 206-214.
    [2] 赵岩, 陆文静, 王洪涛, 等. 城市固体废物处理处置设施恶臭污染评估指标体系研究[J]. 中国环境科学, 2014, 34(7): 1804-1810.
    [3] 纪华. 垃圾填埋场恶臭气体产气机制及其动态变化研究[D]. 北京:中国农业大学, 2004.
    [4] CHIRIAC R, de ARAUJOS M J, CARRE J, et al. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: comparison with biogases from municipal waste landfill site[J]. Waste Management, 2011, 31(11): 2294-2301.
    [5] LOU Z Y, WANG M C, ZHAO Y C, et al. The contribution of biowaste disposal to odor emission from landfills[J]. Journal of the Air & Waste Management Association, 2015, 65(4): 479-484.
    [6] 史炜, 王军民, 曹江林. 垃圾填埋场臭气理论研究进展[J]. 山东化工, 2018, 47(19): 189, 195.
    [7] CERDA A, ARTOLA A, FONT X, et al. Composting of food wastes: status and challenges[J]. Bioresource Technology, 2018, 248: 57-67.
    [8] KASHFI K, OLSON K R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras[J]. Biochemical Pharmacology, 2013, 85(5): 689-703.
    [9] NYAMWEYA N, HOAG S W. Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry[J]. Pharmaceutical Research, 2000, 17(5): 625-631.
    [10] KARAVAS E, GEORGARAKIS E, BIKIARIS D. Adjusting drug release by using miscible polymer blends as effective drug carriers[J]. Journal of Thermal Analysis and Calorimetry, 2006, 84(1): 125-133.
    [11] MORKHADE D M. Comparative impact of different binder addition methods, binders and diluents on resulting granule and tablet attributes via high shear wet granulation[J]. Powder Technology, 2017, 320: 114-124.
    [12] HIREMATH A C, SHERIGARA B S, PRASHANTHA K, et al. Studies on the miscibility of hydroxy propyl methyl cellulose and poly(vinyl pyrollidone) blends[J]. Indian Journal Chemical Technology, 2002, 9(4): 312-315.
    [13] DONG B X, LIM L, HADINOTO K. Enhancing the physical stability and supersaturation generation of amorphous drug-polyelectrolyte nanoparticle complex via incorporation of crystallization inhibitor at the nanoparticle formation step: a case of HPMC versus PVP[J]. European Journal of Pharmaceutical Sciences, 2019, 138:105035.
    [14] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
    [15] 郭学彬, 赵珊, 常江, 等. 膜接触—吸收法去除市政污水厂恶臭气体研究[J]. 环境科学与管理, 2023, 48(6): 94-99.
    [16] LU H T, KANEHASHI S, SCHOLES C A, et al. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening[J]. Journal of Membrane Science, 2017, 539: 432-440.
    [17] 郭婕, 刘静, 邓子龙, 等. 靶向去除恶臭气体硫化氢和氨气的喷膜制备及性能研究[J]. 山东化工, 2021, 50(6): 26-29.
    [18] KOCZKUR K M, MOURDIKOUDIS S, POLAVARAPU L, et al. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis[J]. Dalton Transactions, 2015, 44(41): 17883-17905.
    [19] GRAF C, DEMBSKI S, HOFMANN A, et al. A general method for the controlled embedding of nanoparticles in silica colloids[J]. Langmuir, 2006, 22(13): 5604-5610.
    [20] WU X K, ZHAO Y R, YANG C Q, et al. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries[J]. Journal of Materials Science, 2015, 50(12): 4250-4257.
    [21] XU M L, LI D D, SUN K, et al. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(30): 16372-16376.
    [22] CHANG C Y, ZHANG L N. Cellulose-based hydrogels: present status and application prospects[J]. Carbohydrate Polymers, 2011, 84(1): 40-53.
    [23] 刘啸武. 羟丙基甲基纤维素生产技术和发展前景[J]. 江汉石油职工大学学报, 2004(6): 58-60.
    [24] PRAKASH Y, SOMASHEKARAPPA H, PARAMESWARA P, et al. Characterization of HPMC/PVP polymer blend films using WAXS technique[C]//Solid State Physics, PTS 1 and 2, 2012: 565.
    [25] 李伟, 王锐, 刘守新. 纳米纤维素的制备[J]. 化学进展, 2010, 22(10): 2060-2070.
    [26] XUE Y, MOU Z H, XIAO H N. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications[J]. Nanoscale, 2017, 9(39): 14758-14781.
    [27] 卿彦, 蔡智勇, 吴义强, 等. 纤维素纳米纤丝研究进展[J]. 林业科学, 2012, 48(7): 145-152.
    [28] YIN R, YANG S Y, LI Q M,et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications[J]. Science Bulletin, 2020, 65(11): 899-908.
    [29] 赵冬梅, 初小宇, 魏丽娜, 等. 纳米纤维素在食品包装材料中的应用研究进展[J]. 高分子通报, 2021(11): 11-20.
    [30] 陈秋宏. 纤维素纳米晶稳定高内相乳液及应用[D]. 广州:华南理工大学, 2018.
    [31] 李亚瑜. 纤维素纳米晶/水性聚氨酯薄膜的构建、性能及机理研究[D]. 北京:北京林业大学, 2020.
    [32] 吴开丽, 韩陈晓, 于娟娟. 纤维素纳米晶的制备及应用研究进展[J]. 造纸科学与技术, 2020, 39(4): 9-13.
    [33] 张思航, 付润芳, 董立琴, 等 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸, 2017, 36(1): 67-74.
    [34] 李勍, 陈文帅, 于海鹏, 等. 纤维素纳米纤维增强聚合物复合材料研究进展[J]. 林业科学, 2013, 49(8): 126-131.
    [35] CHOI H Y, BAE J H, HASEGAWA Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water[J]. Carbohydrate Polymers, 2020, 234:115881.
    [36] GUAN Q F, YANG H B, HAN Z M, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient[J]. Science Advances, 2020, 6(18):eaaz1114.
    [37] WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020, 389: 124449.
    [38] EYLEY S, Thielemans W. Surface modification of cellulose nanocrystals[J]. NANOSCALE, 2014, 6(14): 7764-7779.
    [39] KARGARZADEH H, MARIANO M, GOPAKUMAR D, et al. Advances in cellulose nanomaterials[J]. Cellulose, 2018, 25(4): 2151-2189.
    [40] MOHAMMED N, LIAN H, ISLAM M S, et al. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals[J]. Chemical Engineering Journal, 2021, 417: 129237.
    [41] YANG X, CRANSTON E D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties[J]. Chemistry of Materials, 2014, 26(20): 6016-6025.
    [42] 田凤蓉, 张彬彬, 杨志林, 等. 酸性洗涤塔-生物滤塔-生物曝气池组合工艺处理恶臭气体NH3和H2S[J]. 环境工程学报, 2014, 8(9): 3905-3911.
    [43] MOREIRA R, CHENLO F, TORRES M D, et al. Drying kinetics of biofilms obtained from chestnut starch and carrageenan with and without glycerol[J]. Drying Technology, 2011, 29(9): 1058-1065.
    [44] LECETA I, GUERRERO P, DE LA CABA K. Functional properties of chitosan-based films[J]. Carbohydrate Polymers, 2013, 93(1): 339-346.
    [45] SUYATMA N E, TIGHZERT L, COPINET A, et al. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films[J]. Journal of Agricultural and Food Chemistry, 2005, 53(10): 3950-3957.
    [46] OSÉS J, FERNÁNDEZ-PAN I, MENDOZA M, et al. Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity[J]. Food Hydrocolloids, 2009, 23(1): 125-131.
    [47] 吴毅, 金少鸿. 药用辅料吐温80的药理、药动学及分析方法研究进展[J]. 中国药事, 2008(8): 717-720.
    [48] 王伟江. 天然活性单萜——柠檬烯的研究进展[J]. 中国食品添加剂, 2005(1): 33-37.
    [49] CIRIMINNA R, LOMELI-RODRIGUEZ M, CARA P D, et al. Limonene: a versatile chemical of the bioeconomy[J]. Chemical Communications, 2014, 50(97): 15288-15296.
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 网络出版日期:  2025-01-18

目录

    /

    返回文章
    返回